
第十二周 Transformer模型

李泽榉，复旦大学生物医学工程与技术创新学院

目录

1

2

3

4

Transformer介绍

Transformer结构

视觉Transformer

语言Transformer

2

Transformer论文：Attention Is All You Need

• 2017年发布以来，引用量17万+
• 目前整个AI领域就靠它了，具备大一统可能性
• 所有作者都已出走创业
• 真的是：Attention is ALL you need

3

Transformer应用与成就：自然语言处理

• 机器翻译

• 大语言模型的兴起

• 其他自然语言处理任务
• 基于Transformer的模型稳居SuperGLUE任务榜单前列

https://web.stanford.edu/class/cs224n/ - lecture08	transformers 4

https://web.stanford.edu/class/cs224n/

Transformer应用与成就：其他领域

https://web.stanford.edu/class/cs224n/ - lecture08	transformers 5

https://web.stanford.edu/class/cs224n/

Transformer应用与成就：Scaling Laws

• 借助Transformer模型结构，随着模型规模、训练数据量和计算资源的同步增
加，语言建模的性能实现了稳步提升

• 如果我们继续扩大这些模型的规模（不改变架构），它们最终能否达到或超越
人类的水平？

https://web.stanford.edu/class/cs224n/ - lecture08	transformers 6

https://web.stanford.edu/class/cs224n/

RNN回顾

• RNN“从左到右”顺序处理输入
• RNN 编码了线性局部性
• 相邻的词语往往会相互影响它们的含义

• Problem:
• RNNs需要 O(序列长度) 的步骤才能与距离较远的词进行交互
• 前向和后向传播都有 O(序列长度) 的无法并行的操作

主语chef 的信息需要传递 O(序列长度)
层才能与动词ate交互!

https://web.stanford.edu/class/cs224n/ - lecture08	transformers 7

https://web.stanford.edu/class/cs224n/

目录

1

2

3

4

Transformer介绍

Transformer结构

视觉Transformer

语言Transformer

8

Transformer概述

• Transformer网络是用于序列到序列学习（Seq2Seq）的神经网络
• 它将给定的元素序列（例如一个句子，即一系列词语）转换为另一个序列
• 自然地，这种Seq2Seq模型的一个应用就是翻译。

https://jalammar.github.io/illustrated-transformer/	 9

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer概述

• Encoder - 将输入序列映射为一个抽象的连续
表示，该表示包含了输入中所有学习到的信息

• Decoder – 利用encoder输出的信息，同时将
自身先前的输出作为输入进行处理，生成下一
步的输出

https://jalammar.github.io/illustrated-transformer/	 10

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Decoder

Encoder

Transformer概述

• Encoder部分由多个encoder结构堆叠而成
• encoder的结构都是相同的
• 权重不共享

https://jalammar.github.io/illustrated-transformer/	 11

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer概述

• 自注意力层 (Self-Attention)：帮助encoder关注输入句子中的其他词语

• 前馈神经网络 (Feed Forward)：捕捉输入数据中的复杂关系

• Encoder-Decoder注意力层 (Encoder-Decoder Attention)：帮助decoder关注输入
句子中的相关部分

https://jalammar.github.io/illustrated-transformer/	 12

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Word Embedding

• 词嵌入 Word Embedding:
使用词嵌入算法（如word2vec）将
每个输入词语转化为向量

https://jalammar.github.io/illustrated-transformer/	 13

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Self-Attention

• 自注意力 Self-Attention:
自注意力机制使模型能够查看输入
序列中的其他位置，以获取有助于
更好地编码该词的线索

https://jalammar.github.io/illustrated-transformer/	 14

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Self-Attention

“The animal didn't cross the street because it was too
tired”

• 这句话中的“it”指的是什么？
• 是指“street”还是“animal”？

• 当模型处理“it”这个词时，自注意力机制会让
模型把“it”和“animal”联系起来

https://jalammar.github.io/illustrated-transformer/	 15

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Self-Attention

Step 1
• 创建三个向量 (Query, Key and

Value)

• 这些向量由词嵌入分别与训练得到
的三个权重矩阵 (WQ, WK, WV) 相
乘得到

𝑞! = 𝑥!𝑊"

𝑘! = 𝑥!𝑊#

𝑣! = 𝑥!𝑊$

https://jalammar.github.io/illustrated-transformer/	 16

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Self-Attention

Step 2
• 计算注意力得分

• 将当前单词的query与句中对应的所
有key进行点乘，得到注意力得分

• 这个分数决定了我们进行编码时，
当前单词对输入句子各个部分的关
注程度

https://jalammar.github.io/illustrated-transformer/	 17

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Self-Attention

Step 3

• 将分数除以向量维度的平方根(d𝒌)

Step 4
• 计算分数的Softmax
• Softmax对分数进行归一化处理，得

到各个value的权重（正值，和为1）

https://jalammar.github.io/illustrated-transformer/	 18

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Self-Attention

Step 5
• 根据softmax计算的权重，对句中所有

value加权求和

• 通过乘以较小的权重，忽略不相关的单词

• 将我们想要关注的单词编码到最终的结果中

https://jalammar.github.io/illustrated-transformer/	 19

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Multi-Head Attention

https://jalammar.github.io/illustrated-transformer/	 20

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Multi-Head Attention

https://jalammar.github.io/illustrated-transformer/	 21
多头自注意力

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Positional Encoding

• Positional Encoding:
由于自注意力机制没有考虑序列的顺

序信息，我们需要对句子的顺序进行

编码

https://jalammar.github.io/illustrated-transformer/	 22

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Positional Encoding

• 将第𝑖个位置的词嵌入加上位置向量𝑝𝑖
• 这种位置向量需要遵循一定的模型可以学习到的模式，
帮助模型确定每个单词的位置或者序列中不同单词之间

的距离

• Key insight：最重要的位置信息是单词之间的相对关系
（如 “cat ”是 “eat ”之前的单词），而不是它们的绝对位
置（如 “cat ”是句中的第二个单词）。

https://web.stanford.edu/class/cs224n/ - lecture08	transformers 23

https://web.stanford.edu/class/cs224n/

Transformer结构拆解: Positional Encoding

24

• 本质上是时域信号在傅立叶基上的投影

Transformer结构拆解: Positional Encoding

25

• 图像重建

• 三维重建

Transformer结构拆解: FFN

• 前馈神经网络 Feed Forward Network
• 最基础的人工神经网络结构，层与层之
间的信息单向流动，无循环或回路

• 对自注意力的输出应用前馈神经网络，
以提供非线性的激活函数，增强模型的

表示能力

https://jalammar.github.io/illustrated-transformer/	 26

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Add & Normalize

• Add & Normalize
Residual Connection and Normalization

• 残差连接 Residual Connection
直接将 “原始 ”的词嵌入信息传递给下一
层，可以防止网络在处理多层信息时 “遗
忘 ”或扭曲重要的信息。

https://jalammar.github.io/illustrated-transformer/	 27

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Add & Normalize

• Add & Normalize
Residual Connection and Normalization

• 层归一化 Layer Normalization
对每一层的数据进行归一化，使得层归

一化后的输出具有零均值和单位标准差

https://jalammar.github.io/illustrated-transformer/	 28

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer: Encoder总结

• Word	Embedding：将词语编码为数字

• Self-Attention：对词语之间的关系进
行编码

• Add	&	Normalize：提高训练速度和稳
定性

• Positional	Encoding：对词语的位置进行
编码

• Feed	Forward	Neural	Network：捕捉输
入数据中的复杂关系

https://jalammar.github.io/illustrated-transformer/	 29

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Encoder-Decoder Attention

• Encoder-Decoder Attention

• decoder端生成自己的Query，encoder
端提供Key与Value

• 模型中的每个decoder都将使用encoder
端提供的Key与Value，以帮助decoder
专注于输入序列中的适当位置

https://jalammar.github.io/illustrated-transformer/	 30

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Encoder-Decoder Attention

https://jalammar.github.io/illustrated-transformer/	 31

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Linear and Softmax Layer

• Linear

• 简单的全连接神经网络，将decoder产生
的向量映射到logits向量中

• 假设我们模型的词汇表包含 10,000 个单
词，那么 logits 向量将有 10,000 个单元，
每个单元代表一个单词的得分

https://jalammar.github.io/illustrated-transformer/	 32

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer结构拆解: Linear and Softmax Layer

• Softmax

• softmax 层将这些分数转化为概率分
布（全部为正值，和为 1.0）

• 模型选择概率最高的单元格，并将与
之相关的单词作为该时间步骤的输出
结果

https://jalammar.github.io/illustrated-transformer/	 33

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer: Decoder

https://jalammar.github.io/illustrated-transformer/	 34

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Transformer: Decoder总结

• Linear Layer：将decoder生成的向量映射到
logits向量中，为输出词汇表中的每个词分配
一个分数

• Word Embedding, Positional
Encoding, Self-Attention, …

• Encoder-Decoder Attention：追踪输
入中的重要信息

• Softmax Layer：将分数转化为概率分布

https://jalammar.github.io/illustrated-transformer/	 35

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Self-Attention计算公式

几个关键点：
• 计算顺序：Q、K、V
• 归一化：分母上是sqr(d)
• attention score是用softmax算出来的 36

Self-Attention计算公式

37

Self-Attention计算公式

以Tensor的形式并行执行 38

Self-Attention计算公式

39

Self-Attention的理解

全连接层 注意力层

W与输入无关
A与输入相关 相当于在WX的基础上乘了一个

attention权重A，其中A只与输入X
自己有关（即句子X中各单词间的

自注意力）

V相当于全连接层的WX

40

Transformer的理解

Transformer是一种Token网络

41

Transformer的理解

Transformer既有LSTM	的影子也有CNN	和RNN的影子？
甚至还有MLP的影子？

42

Transformer的理解

从MLP角度：
• Transformer很像MLP

从LSTM到Transformer：
• 串行改并行，单头改多头
• 增加cosine/sine位置编码（因为
没有顺序输入了）

• 减少了内部门的数量，只留下两
个门

• 都有三套参数，Wq/k/v（/W/UV）

43

目录

1

2

3

4

Transformer介绍

Transformer结构

视觉Transformer

语言Transformer

44

视觉Transformer（ViT）

化图像为Token（一个Patch就是一个token）

• 文本Transformer的一个很直接的扩展
• 还是来自Google团队
• 横扫各类视觉任务排行榜
• NLP-CV大一统
• 为多模态模型和AGI的到来奠定基础

45

引用4万+

视觉Transformer（ViT）

化图像为Token（一个Patch就是一个token）

46

万物皆可Tokenize（所有任务都可以用Transformer解决）

47

目录

1

2

3

4

Transformer介绍

Transformer结构

视觉Transformer

语言Transformer

48

语言建模历史

49

过去的预训练：词嵌入

https://web.stanford.edu/class/cs224n/	-	lecture09	pretraining

Word2vec的核心概念	–	“You	shall	know	a	word	by	
the	company	it	keeps”	(J.	R.	Firth	1957:	11)

Problem:	

• 我们用于下游任务的训练数据必须足够，以便模型
能够学会语言的各个方面

• 模型中的大多数参数是随机初始化的

50

https://web.stanford.edu/class/cs224n/

现在的预训练：整个模型

在现代NLP中:	
• 模型中的几乎所有参数都是通过预训练初始化的

• 预训练的方法将部分输入对模型隐藏起来，并训
练模型重建这些部分。

这在以下方面表现得极为有效：

• representations	of	language	-	构建强大的语言表示

• parameter	initializations	-	为强大的自然语言处理模型提
供参数初始化

• probability	distributions	-	生成语言模型的概率分布

https://web.stanford.edu/class/cs224n/	-	lecture09	pretraining 51

https://web.stanford.edu/class/cs224n/

从预训练中可以学到什么?

• Stanford	University	is	located	in	__________,	California.	[知识]	

• I	put	___	fork	down	on	the	table.	[句法]	

• The	woman	walked	across	the	street,	checking	for	traffic	over	___	shoulder.	[指代]	

• I	went	to	the	ocean	to	see	the	fish,	turtles,	seals,	and	_____.		[词义/主题]	

• Overall,	the	value	I	got	from	the	two	hours	watching	it	was	the	sum	total	of	the	popcorn	
and	the	drink.	The	movie	was	___.	[情感]	

• Iroh	went	into	the	kitchen	to	make	some	tea.	Standing	next	to	Iroh,	Zuko	pondered	his	
destiny.	Zuko	left	the	______.	[推理]	

• I	was	thinking	about	the	sequence	that	goes	1,	1,	2,	3,	5,	8,	13,	21,	____		[基本运算]	

• 模型也会学习并加剧各种不良偏见

https://web.stanford.edu/class/cs224n/	-	lecture09	pretraining 52

https://web.stanford.edu/class/cs224n/

预训练Transformer类型

Google OpenAI Google

53

预训练BERT模型

54

预训练BERT模型

完形填空：
学会语言

预测下一个句子：
学会上下文

https://www.youtube.com/watch?v=xI0HHN5XKDo 55

11万+引用

预训练BERT模型

Step1：掩码语言建模（完形填空训练）

56

预训练BERT模型

Step2：下一个句子预测

57

预训练BERT模型

BERT输入

58

预训练BERT模型

BERT可以用于下游各种任务

很多NLP任务使用BERT的词嵌入（768维）
59

GPT（Generative Pre-trained Transformer）

60

预训练Transformer

GPT（Decoder Only）：预测下一个单词

BERT（Encoder Only）：完型填空

61

暴力计算是自然语言处理的未来吗？

目前的知识资源难以满足中文理解的需求

百度知心 搜狗知立方

真正理解自然语言需要大规模、高覆盖率的知识资源

62

暴力计算是自然语言处理的未来吗？

63

暴力计算是自然语言处理的未来吗？

64

暴力计算是自然语言处理的未来吗？

65

暴力计算是自然语言处理的未来吗？

得分率 准确率

语文 - -

英语 93.0 / 95 56/60

地理 24/36 6/9

政治 44/48 11/12

历史 24/40 6/10

数学（理） 30/50 6/10

数学（文） 35/55 7/11

物理 0/12 0/2

化学 6/42 1/7

生物 18/30 3/5

合计 274/408=0.67 96/126=0.76

客观题：在排除了坏样本（带图题,听力题等）
之后，在全部126个样本数可以达到76%的准确
率和67%的得分率，其客观题能力与两名500分
左右的高考生（文科和理科各一名）相当。

主观题：对Chat GPT结果的人工打分，在文科
综合（历史，地理，政治）上取得了不错的成
绩（得分率78% ），在生物可以达到50%的得分
率，而在数学，物理，化学，历史上则表现不
佳（得分率低于30%）。

66

复旦NLP实验室用2022年的高考全国卷来考ChatGPT

ChatGPT为什么这么强？

ChatGPT 能够自动生成类似于人类撰写的文本，它是如何实现的？为什么它能够如
此出色地生成有意义的文本呢？

ChatGPT 的核心任务始终是生成一个“合理的延续”，即根据已有的文本，生成一
个符合人类书写习惯的下一个合理内容。所谓“合理”，是指根据数十亿个网页、
数字化书籍等人类撰写内容的统计规律，推测接下来可能出现的内容。

67

ChatGPT为什么这么强？

值得注意的是，当ChatGPT完成像写文章这样的任务时，它实际上只是一遍又一
遍地询问：“在已有的文本的基础上，下一个词应该是什么？”—— 并且每次都
会添加一个词。

在每一步中，它都会得到一个带有概率的单词列表。但是，它应该选择哪个单词
来添加到它正在写作的文章中呢？

68

ChatGPT为什么这么强？

大部分人认为应该选择“排名最高”的单词（即被分配最高“概率”的单词）。
但这就是一些神秘的事情开始悄悄发生的地方。如果我们总是选择排名最高的单
词，我们通常会得到一篇非常“平淡”的文章，从不显示任何创造力（有时甚至
逐字重复）。

69

ChatGPT为什么这么强？

重复“应用模型“的情况—在每一步中加入概率最高的词

70

ChatGPT为什么这么强？

如果再继续下去会怎样？仅选取概率最高的词，很快就会出现相当混乱和重复的

情况。

71

ChatGPT为什么这么强？

但如果不总是挑选 “顶级 “词，而是有时随机性的挑选 "非顶级" 词？我们可能会
得到一篇“更有趣”的文章。

每次这样做，都会有不同的随机选择，对应的文本也会不同。例如以下这5个例子：

72

ChatGPT的训练流程

有监督微调 RLHF（人类反馈强化学习）
73https://openai.com/index/chatgpt/

https://openai.com/index/chatgpt/

ChatGPT

莱特兄弟飞行者一号人类历史上首次重于空气的航空器持续而且受控的动力飞行

尝试 理论通用

74

难道真的模型规模大到一定程度，能力就"涌现"了？

数字母的能力（2024年夏）：

75

难道真的模型规模大到一定程度，能力就"涌现"了？

数字母的能力（2025年秋）：

76

难道真的模型规模大到一定程度，能力就"涌现"了？

77

数字母的能力（2024年夏）：

难道真的模型规模大到一定程度，能力就"涌现"了？

78

数字母的能力（2024年夏）：

难道真的模型规模大到一定程度，能力就"涌现"了？

79

数字母的能力（2025年秋）：

难道真的模型规模大到一定程度，能力就"涌现"了？

数学计算能力（2024年夏）：

80

难道真的模型规模大到一定程度，能力就"涌现"了？

数学计算能力（2024年夏）：

正确答案：15583.431
81

难道真的模型规模大到一定程度，能力就"涌现"了？

数学计算能力（2025年秋）：

正确答案：15583.431
82

难道真的模型规模大到一定程度，能力就"涌现"了？

基础语法能力 （2024年夏） ：

83

难道真的模型规模大到一定程度，能力就"涌现"了？

84

基础语法能力 （2024年夏） ：

难道真的模型规模大到一定程度，能力就"涌现"了？

85

基础语法能力 （2024年夏） ：

难道真的模型规模大到一定程度，能力就"涌现"了？

86

基础语法能力 （2025年秋） ：

难道真的模型规模大到一定程度，能力就"涌现"了？

地理能力（2024年夏）：

87

难道真的模型规模大到一定程度，能力就"涌现"了？

地理能力（2024年夏） ：

88

难道真的模型规模大到一定程度，能力就"涌现"了？

地理能力（2024年夏） ：

89

难道真的模型规模大到一定程度，能力就"涌现"了？

地理能力（2025年秋） ：

90

更多的证据

词性标注

英文直接使用WSJ
中的标签体系

91

更多的证据

词性标注

中文则使用中科院
计算所的标签体系

92

更多的证据

主观臆造（2024年夏）

93

更多的证据

主观臆造（2024年夏）

94

更多的证据

主观臆造（2025年秋）

95

更多的证据

主观臆造 （2025年秋）

96

学习资源

• https://web.stanford.edu/class/cs224n/	-	斯坦福的nlp课程CS224N，聚焦在深度学习下的nlp，内
容涵盖早期的word2vec，transformer架构，到大语言模型都有讲解

• https://intro-llm.github.io/		-《大规模语言模型：从理论到实践》，更聚焦于大模型训练的全流程

• https://intro-nlp.github.io/	-《自然语言处理导论》，更侧重于传统的nlp方法，学习nlp技术发展
史

• https://www.youtube.com/watch?v=kCc8FmEb1nY	-	跟着Andrej	Karpathy动手实现GPT

• https://poloclub.github.io/transformer-explainer/	-	Transformer可视化工具

97

https://web.stanford.edu/class/cs224n/
https://web.stanford.edu/class/cs224n/
https://intro-llm.github.io/
https://intro-llm.github.io/
https://intro-llm.github.io/
https://intro-llm.github.io/
https://intro-nlp.github.io/
https://intro-nlp.github.io/
https://intro-nlp.github.io/
https://intro-nlp.github.io/
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/
https://poloclub.github.io/transformer-explainer/

谢谢！

98

