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q(xtlxo)
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Algorithm 1 Training Algorithm 2 Sampling

; q( ) . X N(O I)

T Xo ~ q(Xp ford =1, ;.18
3: Tro Uniformf{l;.c:s 7)) o 0
4:

5

. repeat .
: estimated u

NNOI ft>1 1 =10
e o (0, T) ’l‘f Z 1 else z /

1
2
e
Take gradient descent step on 7 4 X1 = Y =L @
5 5 = 5: end for
6

Vo He —eg(Yarxo + V1 — ate}t)H

6: until converged

: return x

sampling from
Tt = Vouzo + V1 — dye estimated distribution

ONRS, *
q(ML/

[l —

/0vs 1847,,; ray @ 1—6[t_1
~ Ve v et _
Tg, To)) = ~— + Q1) Bt )= — 34
fit (¢, To =, = T—a t 1—ay
mean 1 1—a; \ var
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Table 1: Specific design choices employed by different model families. NV is the number of ODE
solver iterations that we wish to execute during sampling. The corresponding sequence of time
steps is {to, t1,...,tn}, where t; = 0. If the model was originally trained for specific choices
of N and {¢;}, the originals are denoted by M and {u;}, respectively. The denoiser is defined as
Dy(x;0) = csip(0) T + cour(0) Fy (cin(cr)a:; cnoise(a)); F} represents the raw neural network layers.

VP [49] VE [49] iDDPM [37] + DDIM [47] Ours (“EDM”)
Sampling (Section 3)
ODE solver Euler Euler Euler 27 order Heun
. . i 1
Time steps tien 14+ 55(es—1) 020 (0240 /020) 77 Uy M1t 1 | Where (Un;ax" + ) .
uy =0 N_l(a'min”_o'max"))
u2+1
U-1= | max(@, o1 7a;00 L
Schedule o(t) Vezhet*+hmint _7 Vi t t
Scaling s(t) 1/Ve 2 Pat?+Bmint 1 1 1
Network and preconditioning (Section 5)
Architecture of Fj DDPM++ NCSN++ DDPM (any)
Skip scaling cuip(0) 1 1 1 02l (024 024)
Output scaling cou(c) —0 o - 0 Odata/\/Oaya + 02
Input scaling ciu(0) 1/vo2+1 1 1/vo2+1 1/+/02 + 03,
Noise cond. cCpoise(0) (M —1) o7 (0) In(30) M —1—argmin; [u; —o|  3In(o)
Training (Section 5)
Noise distribution 7o) ~U(e,1)  In(o) ~U(n(omn), o =1uj, j~U{0,M—-1} In(c)~N(Pyean: P2)
In(0max))
Loss weighting A(o) 1/0? 1/02 - 1/02 (note: *) (0% +0k,) /(0 Oaa)?
Parameters Ba =19.9,Bmin = 0.1  Omin = 0.02 a; = sinz(gm) Omin = 0.002, Omax = 80
e =103, 6 =107  omx =100 C1 =0.001, C2 = 0.008 Odaa = 0.5,0=17
M = 1000 M =1000, j, = 8t Prean= —1.2, Pyg = 1.2

* iDDPM also employs a second loss term Ly, | In our tests, jo = 8 yielded better FID than j, = 0 used by iDDPM

Elucidating the Design Space of Diffusion-Based Generative Models
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Fisher divergence

]Epdata (CL' )
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5 ” Vg log pdata(x)

— V., log py(2)||”

score of data

parameterized score

Vx log pg(x)
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1_75(9(33) | po(Z)) = Eq2,5) [§ |Vzlogq(Z | z) — Vi log po(%)||*| + constant

Fisher divergence joint
of noised data distribution

parameterized score
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Dir(a(#) | po(#)) = Eggat [5 |V log q(@ | ) — Vz log po(#)||?| + constant

a network to predict
1 (negative) noise
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uivalent Reparameterization
Model A A Eq P A X
Xo(ze;t) €o(ze;t) sg(z4;t) Vo(ze; 1) lig(z;)
Image Denoising z; — O1€g z; + 07 sg - -
A - SR -t oz, — 0 Ve z, — ol
Noise Prediction Z; — yXg . .
R ] _ - —0Sg O1Zy + Vg g + 2z
€g(z,:t) T4
Score-based o Xg — Zt) —€g —012Z + Vg  —alg + %
sg(zy;t) of oy ot o
Velocity Prediction | oz; — Xg 0 — O1Zy) —0o¢(z + sg) e — 2
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Demystifying Variational Diffusion Models
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