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What are deep generative models?

Deep generative models are a class of machine learning models that are capable
of generating new data samples that resemble a given dataset. They learn the
underlying distribution of the data and use this knowledge to create new
instances that are similar to the original data but not identical to any specific
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GitHub Copilot

Hi @monalisa, how can | help you?

I'm powered by Al, so surprises and mistakes are possible. Make sure
to verify any generated code or suggestions, and share feedback so
that we can learn and improve.
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Watson, et al. De novo design of protein structure and function with RF diffusion, Nature 2023
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Skilful precipitation nowcasting using deep generative models of radar, Nature 2021
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PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing, SIGGRAPH 2009
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sample from & generator

prior distribution

z ~ p(2)




AT R

- - BERE

« X-WNZE

|:2

<

pose,
size,
color,

breed,

generator

images,
videos,
audios, ...

VNI

S/

U 044,
0‘%0'
A

{90




i

BT REE

* MA—MREREINS s KF I IRGY
- Bir2itEFI RN il Birs i ERa

RN EE]
A generator ﬁ
py(x)

p(Z) pdata(aj)

po(|2)




KLEY,

iy

BHELITDHRIESEDHPRIIES

. KL%ﬂbxxET\XW?E’\J, REXNTAEED T PHITIRD
Dxi(P || Q) =) P(x)log Plz)
rcX Q(SC)

0.02
0.02

0.00 0.00

KLEE R KLESEE/ N




AT AR

« FFA— 1NN EIISE e KFS IR
E*IELL—T—T:ZEUE’J vk ST arivk: <k ;=9 lin
- =\ faEYKullback-Leibler (KL)EE min D ( Paata || Po )

min Di( Pdata || Po )
A generator

(Z) data\L
p o(212) Pdata()




‘*EEZ—

FF—N L

L EEE

WIZ2FNS20p e S RF > BRET

Hir@iFI BRI Birn mERa

=N feiERgKullback-Leibler (KL)&Y

E mein Dx1( Pdata || Do )

= AT D HAIRAAELT max Ervp,,,. logpo(z)

min Di( Pdata || Po )
A generator

p(2)

Po([2)

Pe

arg min Dir( Pdata || Po )
‘ngmm Zyn ta l()gpl ata(2)
po(z)
arg nnn Z —Pdata () log pg(z) + const
arg max Zp{ ta() log pg(z)
arg max E r~paata 108 DO (T)

pdata(m)




AR

- EHEABAORABIAME T 3 B, 08P (0) 1R

- AJLA

A

p.(2)

R IR KR D FAESR, e.g. Generative Adversarial Net

generator ”
\

py(z)

\e >~ discriminator — A or 4A 7

~

pdata(x)

- (BIRERIBEET], e.g. RS FEIEE _ g

pose,
size,

color, images,

breed, videos,

audios, ...




i

BT REE

SHEEIRIRKIPAMLT max Bovp,,., logpe(z) R
MIERBIREpe () ATLARRA

po(z) = / po(z]2)p(2)d:

{BESCIEERp (2) BMELEHIRY
A‘ generator ”

p(2) po()
po(|2)

A/ \HE ot \ : u L
LooHERT (Variational Autoencoder, VAE) B9#ZOEAE: {6 "BARS
X' p(@)R "HERR" 9@

\




i

BT REE

log po(x) Rewrite log likelihood by latent z

= /zq(z) log pe(x)dz or any distribution ¢(z)
- Lq(z) log (n9 (;;|(Z)|Z;;)(Z))dz
_ /q(z) log (pe($|Z)P9(Z) Q(Z))dz

po(zlz)  q(2)

— z)| lo T|2 0 pe(Z) . Q(z) ¢
— /zq( )(l gpo(z|z) + log q(2) i gpe(zl-fv))d

= Eagn| l0gp0(212)| — D (a(2)]po(2)) + D (a(2)Ipo (212)




S/

UD4 D>
@.“Wﬂl
A

B A ERE g

intractable |log pg(x) Rewrite log likelihood by latent z

= | Eag(y | logo(2]2)] |- D (a(2)]lpo(2) ) +Dre (a(2)lIpo(212) )

intractable




i

BT REE

« {BtractableRNT=E—HE

intractable logpg(ac)l—DKL(q(z)||p9(z|w)) intractable

E.nq() | 08 Po(312) ||~ Dia (a(2)]Ipo(2) )

L i
Y

« XM REEEvidence Low Bound (ELBO), EafLMILHEY
- EINEAKLEEREIFN, ELBOtERlogpy () TR




AT RIS

- &Rfa—%, N T1LELBOBEE#E(IL
« 1. Bq@)H—LESEHI N (2]x)
« 2. Efpe (2) I— 1 BRIEES I (2)

Gs(2]2) qo(2|z)  p(2)
E. wmiq | 108 Po(212)] |~ Diw (7601 I74e))



VAE

- ELBOEIETRREL: EfEIRk
o« FIFAAL2IRIRIAIEE

L6,6(®) = ~Eangy(elo) | 108 20(al2) | + D (0(212) Ip(2))

XL encoder X_\ Z decoder x'

q¢(z\x)
po(|2)




VAE

- ELBO{E N B#RREL: IEN{LIRE
- BRGNS, B p(z) =N(2]0,1)

L6,6(%) = ~Eangy(efo) | 1082 (2l2)| + D (6(212) p(2))

~
X encoder % decoder gj'

Q¢(Z|5C)
zA po(|2)

p(2)




VAE

- ELBOfENERZEL: TENMLIRE |1 Vel |
- BERIEIREAEEAE, BD p(2) =N(2]0,1) 0(2le)

« ¥Eqp (z|x)EERBET N (2 | p, 0) A e

- EIR R ER "

f¢(1‘) — MU, 0

- FHESEETS TRIOKLEE
D (M (| ,0) [ V(=] 0,D)




VAE

» EIIIZRAVETIER ] FE

lml
Jii]
»
%
9
¥
ol
A

T encoder > Z2=U+ O *E> 2 decoder Qj’

o — q5(2|7)
po(z|2)

- BT LB RIVAERY)IIZRB R

Log = — Earvgy ol | 108 P0(e12)] + Diw (6(12) Ip(2))




VAE

5

HEIRETIR, RBEEFED, MNESHhD R




VAE

ity

REIE DR



VAE

fete -
Bt

PR LALEBSESEBIEEE,

AT




SSITP

B

ans

ONJ I/@

VAE

(o Z [BJHY4E IR

%
=4

T~
g1

‘ A
\—_
1L

—-_—==
=

&,

)

(NN

F5

QOQQAQQAQAQAUVVVV VWV VNI NINNN
0Q00QQQAQAQAVUVVAU VAV IVINIINN
000000V VUVUVVAXVVNNNYYN
Q00000 QQQUAUVUVIVIVN VNN NYY N\
Q000 QQQQQQAVVVVN VYN YL\
D000 AAIVIVIVVVIVIVVI Y Y YN
999999 IV Y YN
9939393939 J3 V99999 YYLZ\\
CRCRCRCRC R IS I D D R R N N
Q9939 dddadciniommening gy &N
338N MMMNnin g gty s~
AAAAANAONMNMN N n g O O &~
A A AAANNN NN N On Oy O &~
A PN DN N o o Oo Og &~
PP OO E N O Dy b e~
T PP P PP e E R DD DD -
HQQaﬂQQQQ%QQ??7777II
oo
SN~ -
ol - i ol ol ol o S S

3
d
o
o
d

3
3
J
J
J




<
>

TR E)

EX

i

(Xa21

A
+

z

a4 VAERT)

round 1: train in latent space

SO SNNNNNNN
SOCEESSNNNNNNN
TTOCAESSANNNNNNN
TTCCASSNNNNNNNN
TITTor~nANNNNNNN
ToTTTToo o naNNNNNN
FrCoC oo oo NN NNNN -~
VPPPPECrTTRIRNNNN - = -
DOOODODODDOPCEPIRPIRNN A == —
OO OO 000 0 00 O O e = = —— —
NaddddNanNMmMmI LSS S~~~ ~~—
Addadadaagagueseyh NSNS~~~ ~
AddddIovwovwN Y L NN N NN NN
Ad339539999VVVUVVUNNNNNN
33353939999V VCOVVUV U NNNNN
DIHI9I9I9I9I9V VOO QQUV0N U NNN\N

SERaaQuq
SHRRHEUYY

c

99999V V00O QQQAVQVUNNN
D999V Q000QOQQQUQQ QU NN\FT
99999 000000Q0QQQQQ QTN
boooooooooooooooooof
V
v
©
al
"
t
Q
mr
£
=
I
5
3v
n
n
(e}
Tl
C
o |
o
[+¢] [(e} < o~ nw ..b < R,v o]
| | | |

O N M<T N O~ 0O

O N M<T N © ™~ 00O




VAE

JRIRVAER B E LR E RIS
- BEER(TEE—EERNEEEE, 5—EAENREIES X

AA\ e pu(el2) »

2169

pdata

pdt




Vector Quantized VAE
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Vector Quantized VAE

* cluster centers: ¢




Vector Quantized VAE

 cluster centers: 0 o

* assignment: A

21

4




G SITP

Pand

ONJ V@

=0

if z
ifz=1

|

x: data point
0
1

—~

8
N

~
(=)

6
4
2
0

<
> = o
O w7
O g u
N E £
-+ wm
C =
O 2
> S a4
S °
r e o
@)
e
O
>




SSITP

Pand

ONJ l/@

Vector Quantized VAE

ifg=1
ifz=0

B

x: another data point

0
E-step

cluster centers

|
<

t

assignmen




Vector Quantized VAE

* cluster centers: 6

* assignment: E-step
* update: M-step

updating centers by:
9+l — arg max Q010D
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p(A, B, C) = p(A)p(B | A)p(C | A, B)
. . p(C=new | dark car)

. p(B=dark | car) . p(C=old | dark car)
p(ESS) ‘ ‘ p(C=new | light car)
p(B=light | car) ‘ p(C=old | light car)

. . p(C=new | dark bus)

p(B=dark | bus) . p(C=old | dark bus)

p(A=bus) . ‘ p(C=new | light bus)

p(B=light | bus) ‘ p(C=old | light bus)
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Case 1: Partitioning the input representation space «

p(x1, T2, ..., Tn) = p(z1)p(T2 | T1).-.P(Tn | 1,52, .00; Tn—1)

1 ) In
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Case 2: Partitioning the latent representation space z

p(x,z) = p(z)p(x | 2)
with p(z) = p(z1)p(22 | 21)...p(2n | 21, 22, ..., Zn—1)
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Case 3: Progressively transforming data distributions

Example: Diffusion Models
p(XO:T) = p(XT)p(XT_l | XT)---p(Xl | X2)p(x0 | Xl)

p(xr-1 | xT1) p(x1[x2) p(xo|x1)
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token sampling

east=0.4 |
morning=0.3 v
The sun rises in the — 2%, sky=017""" — The sun rises in theimorning
distance=0.1
<=0.03

Less likely

What are generative models?

& Generative models are a class of machine learning models designed to generate

new data samples that resemble a given dataset. They aim to learn the

underlying distributio @
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0

* Conceptually, these are different mappings

* But we model them by shared architectures

* and by shared weights 0

p(A, B, C) = p(C)p(B | C)p(A | B, C)
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- B{HRYAR: PixelCNN

N‘i .
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A ]

Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel z; the model can only condition on the previously generated pixels
Z1,...z;—1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

Conditional Image Generation with PixelCNN Decoders
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- B{HRYAR: PixelCNN
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel z; the model can only condition on the previously generated pixels
Z1,...z;—1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.

Conditional Image Generation with PixelCNN Decoders
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Figure 1: Left: A visualization of the PixelCNN that maps a neighborhood of pixels to prediction for
the next pixel. To generate pixel z; the model can only condition on the previously generated pixels
Z1,...2i—1. Middle: an example matrix that is used to mask the 5x5 filters to make sure the model
cannot read pixels below (or strictly to the right) of the current pixel to make its predictions. Right:
Top: PixelCNNs have a blind spot in the receptive field that can not be used to make predictions.
Bottom: Two convolutional stacks (blue and purple) allow to capture the whole receptive field.
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VQ-VAE Encoder and Decoder Training

Encoder J Decoder

Bottom
Level > ke
va

Original Reconstruction

(a) Overview of the architecture of our hierarchical
VQ-VAE. The encoders and decoders consist of
deep neural networks. The input to the model is a
256 x 256 image that is compressed to quantized
latent maps of size 64 x 64 and 32 x 32 for the
bottom and top levels, respectively. The decoder
reconstructs the image from the two latent maps.

Image Generation

l Decoder

Generation

(b) Multi-stage image generation. The top-level
PixelCNN prior is conditioned on the class label,
the bottom level PixelCNN is conditioned on the
class label as well as the first level code. Thanks
to the feed-forward decoder, the mapping between
latents to pixels is fast. (The example image with
a parrot is generated with this model).

Generating Diverse High-Fidelity Images with VQ-VAE-2

)

@‘\!ﬂﬂl
TS

$UD,

VNI

J

90

S/




Visual autoregressive modeling
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Stage 1: Training multi-scale VQVAE on images
(to provide the ground truth for training Stage 2)

Stage 2: Training VAR transformer on tokens
(/5] means a start token with condition information)
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Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
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What are deep generative models?

Deep generative models are a class of machine learning models that are capable
of generating new data samples that resemble a given dataset. They learn the
underlying distribution of the data and use this knowledge to create new
instances that are similar to the original data but not identical to any specific

training exa @
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“dresser” “swivel chair” “astronaut” “mushroom house”
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“red fox”
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“images following CIFAR10 distribution”
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a baseball player with a catcher and umpire on top of a baseball field.

a baseball player is sliding into a base.

a baseball player swings at a pitch with the pitcher and umpire behind him.
baseball player with bat in the baseball game.

a batter in the process on the bat in a baseball game.
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£ User What is unusual about this image?

y: BlR X

k Source: https://www.barnorama. com/wp-content/uploads/2016/12/03-Confusing-Pictures. jpg )

x: RGERYEIE

board attached to the roof of a moving taxi.

(GPT—4 The unusual thing about this image is that a man is ironing clothes on an ironing )
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The chest radiograph demonstrates bilateral pleural effusions, more
pronounced on the right, with associated bibasilar atelectasis. There
Is evidence of pulmonary vascular congestion and cardiomegaly.
There is no pneumothorax. A right-sided dialysis catheter is
visualized. The overall appearance is consistent with pulmonary
edema. The combinations of findings suggests fluid overload,
possibly related to renal dysfunction requiring dialysis.
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