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Patient ID: X

| _Visualizations /|
W Patient age: 60 Family History: None

Patient Breast Screening /}"

Mammograms and
patient features

. MLO Right
hd! !n !I Sign: Assym. Density Sign: Assym. Density Sign: None -
7 Suspicion: Malignant Suspicion: Makgnant Suspicion: None Su.pk:lon None
K }\ o Conspicuity: Visible Conspicuity: Visible Conspicuity: None Conspicuity: None
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Overall Diagnosis: Malignant

Radiologist Interaction with MVMT

Multi-view Multi-task Learning for Improving Autonomous Mammogram Diagnosis
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« LIME (Local Interpretable Model-Agnostic Explanations)
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“Why Should | Trust You?” Explaining the Predictions of Any Classifier
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Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N
Require: Instance z, and its interpretable version z’
Require: Similarity kernel 7., Length of explanation K

R HBERERREIE 2}

for i€ {1,2,3,...,N} do
z; « sample_around(z")
Z «— ZU(z;, f(2:), mz(2:))
end for
w < K-Lasso(Z, K) > with z; as features, f(z) as target
return w

¥

A

‘; -

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top
3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)
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A Unified Approach to Interpreting Model Predictions
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Saliency Map

| Saliency Map: Calculates which pixels, when changed
slightly, affect the class score the most.
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Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
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True Label: Afghan Hound
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Occlusion Sensitivity: Hides parts of the image to
see how the model's confidence changes.

Visualizing and Understanding Convolutional Networks
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« CAM (Class Activation Mapping)
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Sum
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Final Convolutional Global Average Weighted Sum
Layer Pooling (GAP)

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
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Step 1. Step 2. Step 3.
Start with a random Use gradient ascent to iteratively change The final image is the model's
noise image the pixels to maximize the ‘dog’ score. internal representation of a ‘dog’".

Class Logits
pre_softmax[k]

Flamingo Pelican Hartebeest

Understanding Neural Networks Through Deep Visualization
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Neuron

layer,[x,y, 2]
Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step O Step 4 Step 48 Step 2048

The Building Blocks of Interpretability
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Making sense of these activations is hard because we usually

work with them as abstract vectors:

a,3=[0,0,0,0,892,0,0,0,177,0,0,0, ..]

With feature visualization, however, we can transform this

abstract vector into a more meaningful "semantic dictionary".

769.

There seem to be detectors for floppy ears, dog snouts, cat heads, furry legs, and grass.

The Building Blocks of Interpretability
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Making sense of these activations is hard because we usually

work with them as abstract vectors:

ag 10 = [0, 0, 812, 0, 82.0, 0, 0, 20.4, 0, 0, 0, 0, ...]

With feature visualization, however, we can transform this

abstract vector into a more meaningful "semantic dictionary".

There seem to be detectors for floppy ears, dog snouts, cat heads, furry legs, and grass.

The Building Blocks of Interpretability
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The Building Blocks of Interpretability




VNI

TRAIRT R T

S/

|
UDJ »
@.“\Wﬂl
A

- IRSAHME . I T. B, REMMNESEmE SR

- R LAH— S HE SRR

Neuron 1 '

Neuron Channel Layer/DeepDream Class Logits

layer,[x,y,z] layer,[:,:,z2] Layer il a2 pre_softmax [k] Jointly optimized
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Input image
(256,256,3)
e input
— | ZERO == —
PAD . RelLU RelLU

Switches

Filters Switches Filters

Reconstruction

Filters

Switches

Flatten

(5,5,256)

output

0.02
0.93
0.04

0.07
0.11
0.09

» Keep the max activation of a feature map

« Set all other activations of the layer to O
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Layer 1learns basic edges Layer 2 combines edges Layer 3 combines textures
and colors. into textures. into object parts.

The Building Blocks of Interpretability




S/

I\

{90

UD4 D>
@.“Wﬂﬂl
A

. ST TR R

+-+ "'. l'..
Explai | ifi / '
Xplain any classitier Fdo |LIME i ' SHAP
+ 0 l'
What part of the input is Saliency Occlusion | Class Activation
: ? 1io o
responsible for the output? Maps <\ Sensitivity =& Maps (CAMs)

What is the model’s internal
“idea” of a concept?

q‘, ‘D Gradient Ascent
&

(Class Model Visualization)

. : FAEAR] Dataset Search
What is the role of a given e@ Deconvolution @[Q (finding images that

: 2 . g
neuron, filter, or layer? maximize activation)




BxR W2 ESaian) 1



BRRIK

o« (FR—glE, EEIEG—MEE200BEHIEMNESERE (LLM)
, (BERINESCRFIMAFRILTRE, FEOERE:

- HEEREIAME

- TeME, BRI,
« EERDEREIR (Agent) IHEHIE

* EXIIRE ARG

ZE:

Rd 5.

e %
<

" [ARRE et

a? n

RS

TR QE&T\E’JUIIQWJCHZHU, (RROZAMA RSt HFE A A)RR ?




VNI

S/

83 AN
2y
s

{90

Ll
O
=R
R
Hd
WE

R

KBS

i

- WELLMAIPI AR :

2. The Training & Scaling
Lens: How it learned
(telemetry, curves).

1. The Behavioral Lens:
What it does on tasks
(evals, safety, agents).

Training &
Scaling

Representation

4. The Data Lens:
What it actually saw
during training.

3. The Representation
Lens: How it encodes
information internally.

O
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« The Behavioral Lens
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« The Behavioral Lens
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GPT-4 Technical Report
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« The Training and Scaling Lens
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The Training and Scaling Lens

A2k

EARESH

~ 7
Ll
LII
\
P
%

E5E

1
i
\Y
i

&+iTH-> B EEE

Ll

IR, ENMESEERISZN

Ekibatch size, ERLGIEINFESI=

Training Compute-Optimal Large Language Models

1T #
Pl
7
S56E /,"*\//{ —— Approach 1
2 ""/" —— Approach 2
" : —— Approach 3
f‘t" 108 -=-- Kaplanetal (2020)
]
E 7 Chinchilla (708)
S 108 ¥ Gopher (280B)
) % GPT-3(175B)
¥r Megatron-Turing NLG (530B)
100M
-
10M = - : ,
10%7 10% 104 104 104*

FLOPs

Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large
models (see Section 4.2).
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« The Representation Lens
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Attention Is All You Need
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« The Representation Lens
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Original Transformer Model Replacement Model

The underlying model that we study is a We replace the neurons of the original model with features. There are typically more features

transformer-based large language model. than neurons. Features are sparsely active and often represent interpretable concepts.

output output Feature
Annapolis« Massachusetts. Boston« Michigan.‘
MLP  Attention Little Rocke California. Sacramento< Colora
) A 3 % :

Layer 3 A A (J—neuron O*Delaware. Dover« Florlda.r Tallahassee« Geo
et Concord« New Jersey.1 Trenton< New Mex
gan@+t Lansing« Minnesota. Saint Paule Missig

o nesseefd Nashville« Texas. Austine Utahiz Sal
A
Egyen2 -t -t ialdl Richmonde Washington.r Olymp ia« West Vi

To understand what a feature represents,
~ b we use a feature visualization, which shows

Layer 1 e P
dataset examples for which the feature is
most strongly active. In this example, the
feature fires strongly when the model is
Token1 Token2 Token3 Token1 Token2 Token3 about to say a state capital.

Figure 2: The replacement model is obtained by replacing the original model’'s neurons with the cross-layer transcoder’s sparsely-active features.

Tracing the thoughts of a large language model
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« The Representation Lens
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prompt completion When we inspect the features directly
after the first rhyme, we see Claude
PROMPT FEATURES TOP PREDICTION A rhyming couplet: & planning about the word “rabbit” as a

possible candidate for the future rhyme.

large He saw a carrot and had to grab it, Q——> | “rabbit” concept

The opposite of "small" is " » Quote (English) |-

His hunger was like a starving rabbit

"INRIR XEE > Quote (Chinese) ‘; X .
(Chinese for “big”) Suppression If we intervene by suppressing this concept
‘ i at this point, Claude finds and uses another
A rhyming couplet: & candidate, adjusting its verse to naturally
Le contraire de " petit " est " > Quote (French) i g rand arrive at this new ending.

(French for “big”) He saw a carrot and had to grab it, b[ﬁ[ “rabbit” concept

S ARED His hunger was a powerful habit

Antonym MULTILINGUAL
Simplified attribution graphs for translated — concept FEATURES

versions of the same prompt, asking Haiku Injection If we replace the concept with a different
what the opposite of “large” is in different one, Claude can again modify its approach to
A rhyming couplet: plan for the new intended outcome.

languages. Significant parts of the
computation appear to be overlapping Small Large =) He saw a carrot and had to grab it, h 7 | “green” concept
“multilingual” pathways. Note that these are concept P concept ——

highly simplified.

freeing it from the garden’s green

Tracing the thoughts of a large language model
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Composition of the Pile by Category
= Academic * Internet = Prose * Dialogue * Misc
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Figure 1: Treemap of Pile components by effective size.

The Pile: An 800GB Dataset of Diverse Text for Language Modeling
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heuristics

data augmentation
resizing

de-tokenization
project to feasible space
MCTS, RL, ...

feature engineering

tokenization



INEE

s ARSI AMNE— N EANEGS, BER—HMoFARRAYSAIS

- Z=, ZIe, BEBRSEURY

The drop in reasoning
benchmarks (Behavioral Lens)
could be caused by a change
in the data domain mix (Data
Lens) or an instability during
optimization (Training Lens).

The latency spike (Behavioral
Lens) could point to inefficient
MoE routing during training
(Training Lens).

TR

The higher jailbreak rate
(Behavioral Lens) might be
linked to corrupted data or a
failure in specific internal
representations of safety
concepts (Representation
Lens).
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