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Medical Image Segmentation

» ldentify groups of pixels that go together for (e.g. MRI, CT, ultrasound...).
» A critical step to transfer the power of machine learning into the clinical diagnosis process.

Ground Truth Native T1 MRI T1-weighted MRI T2-weighted MRI T2 FLAIR MRI
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Model
Performance

Deployment
Environment

Optimization
Algorithms

Data
Distributions

The model is unreliable
because of misaligned goals!
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: Expectation
Over-optimism Problem.

: Goal Mis-
generalization Problem.

: Specification
Failure Problem.
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Specification Failure Reason: Class Imbalance

> , Which refers to the imbalanced distributions of samples from different categories, cause
difficulties for machine learning models to learn well.

(a) Brain lesion (b) Brain tumor (glioma) (¢) Brain tumor (vestibular schwannomas)
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Goal Mis-generalization Reason: Domain Shifts

> is a common issue in medical imaging as the medical images can be collected from different
clinical sites. As data-driven methods, deep neural network may not generalize well under domain shifts.

T2-weighted MRI T2-weighted MRI T2-weighted MRI T2-weighted MRI T2-weighted MRI T2-weighted MRI
Scanner | Scanner 11 Scanner 111 Scanner IV Scanner V Scanner VI

Example from
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Expectation Over-optimism Reason: Model Uncalibration

» As probabilistic model, neural network produces the probability of the predictions. However, modern
deep neural networks are known to about the predictions.

Absolute Error between Prediction and Ground Truth Entropy of Predicted Probability

imagaiCreanappad Wil Beaynd Tt Real DSC is 0.942 Estimated DSC is 0.992

Absolute Error between Prediction and Ground Truth Confidence Score
Real DSC is 0.806 Estimated DSC is 0.966

Absolute Error between Prediction and Ground Truth Entropy of Predicted Probability

| | i Truth
mage Overlapped with Ground Trut Real DSC is 0.061 Estimated DSC is 0.955

EEm The segmentation error The regions with low confidence score
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[Il. Reassurance

Observations High Under-segment  Over-segment

» Class imbalance causes : accuracy (low sensitivity) (low precision)
» Understanding the effects of class imbalance in segmentation.
) O

(a) Asymmetric (b) Context Label

(a) Ideal segmentation YT IRD W. ., s P : G
‘ go - . J go Dgenous T - -
Overfitting of under-represented  Underfitting of heterogenou reoularizations Learning (CoLab)

foreground samples background samples

(b) Under segmentation: (c) Over segmentation: l
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[Il. Reassurance

Analysis

» With less training data, performances decline due to the drastic , While precision is
retained.

Train w/ 100% Train w/ 50% Train w/ 10% Train w/ 5%
training data training data training data training data H |g h

daCCuracy

Image (T1 MRI) Ground Truth

w/ DeepMedic

Red: Brain tumor
core

Under-segment
(low sensitivity)

. Brain stroke lesion

AINEN 3% 0% 5% 120% 50%
Amoun o data Amount of training data
| e | &

Brain tumor segmentation |Brain lesion segmentation | S organs segmentatio: Kidney tumor segmentation
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[Il. Reassurance

Analysis

» CNN maps training and testing samples of the background class to similar logit values.
» However, significantly for the foreground class towards and
sometimes across the decision boundary.

Tumor w' 100% data Tumor w/ 10% data Tumor w/ 5% data

*

Train ® Test Mean Value Decision Boundary
FGw/ 100%data | FGw 50%data , FGw/20%data | FGw/10%data ,
30 - 30 v 30 4 30 s

2

10 & -
ol ™= K

10

2 2 3 2 0 2 2
BG w/ 100% data , BGw/ 50%data |, p BGw/ 10%data
A 0 — 30! S/ 0 S/

sl Foreground
wel== Background
:

BGw' 100% data BGw/ 10% data

100% 50%
Amount of training data

Amount of training data
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[Il. Reassurance

Method and Results

» We make the logit activations of foreground class far away from the decision boundary by
in different ways.

e

© /I : Foreground/background

d O ©/[[]: Augmented foreground
] background
: Original'regularized
decision boundary

5% training
Method 5 v

Vanilla - CE [20]
Vanilla - CE - 80% tumor
Vanilla - F1 (DSC)
Vanilla - F2 [14]
Vanilla - F4 [14]
Vanilla - F8 [14]

Original/asymmetric focal loss

Large margin loss [31] 445 | 359 | 82. 20.2
Asymmetric large margin loss I
Focal loss [29] 54.0
Asymmetric focal loss
Adversarial training [12] 53.2
Asymmetric adversarial training

Mixup [47] 497
Asymmetric mixup
Symmetric combination 50.0 0 1
Asymmetric combination -l

Z.Li
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Results

» Asymmetric modifications lead to better separation of the logits of unseen foreground samples.

Train ® Test Mean Value Decision Boundary
Original/asymmetric Original/asymmetric Original/asymmetric Original/asymmetric Asymmetric
large margin loss focal loss adversarial training mixup combination

_L\ 1

Vanilla

*

X

T %

S

E

Train ® Test Mean Value Decision Boundary

w/o Original/asymmetric Original/asymmetric Original/asymmetric Original/asymmetric Original/asymmetric Asymmetric
augmentation augmentation large margin loss focal loss adversarial training mixup combination

*.
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Analysis

» With heterogeneous background, performances decline due to the drastic
sensitivity is retained.

e DSC  wefe SeNSitivity Precision

Test data of liver tumor Test data of kidney tumor Test data of brain tumor
1 1

-

V////A

» w/(; Ali\v'cr o o w/o tissue w/ tissue
masks asks asks masks masks
( wW/0 context (h) W/ anatomy
a\ W/0 context . \b) W/ anatomy T
labels (zoom-1n = masks (zoom-in
masks

lacls of false positives) of false positives)

Training data of brain tumor
1

w/o liver w/ liver wi/o kidney w/ kidney w/o tissue w/ tissue
masks masks masks masks masks masks

Z.Li
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High
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[Il. Reassurance

Analysis

» Neural networks could not map the heterogeneous background samples to in feature space.
» As a result, the logit activations of background would approach and even move across the decision boundary.

(a) Liver tumor w/o liver masks (b) Liver tumor w/ liver masks

' 4
%

* Mean Value
= Decision Boundary -
3 D p—
-The center 95% distribution:
of the distance of :
foreground/background logits

casd = 1503 : | False positives per case = 1268 -to the decision boundary .
zoom-in of the : ; g

background logits

max(zz, Z3)

Z.Li



|. Model-Fitting

I Robustness Underfitting under Class Imbalance 15/40

[Il. Reassurance

Method and Results

» We propose :
» We train an auxiliary network as a task generator, along with the primary segmentation model, to
automatically generate context labels that positively affect the ROl segmentation accuracy.

Liver tumor Brain tumor
segmentation segmentation

DSC

e : 03
w/o context w/ liver w/o context w/ tissue
CoLab

labels masks labels masks GolLab

x; : Image sample M;: Soft dilated mask

¥i = (¥i1, ¥i2): Ground truth label

vi1: Ground truth of the ROI class
~ ~ - -
¥;: Extended label ¥;: Distance constrained label =
Second-order H D
Task generator g, D w optimization <= e optimization based on l

Segmentation model fg D 6 optimization == ro1 (for (%), ¥1) I ; - . ol B

wrt @ o ' 0 e —:
2 i . r 7/ ! liv
One-step optimization , ~ ¥ w/o context w/ liver w/o context w/ tissue CoLab
oLa oLa
labels masks labels masks
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[Il. Reassurance

Results

» Similar and sometimes better effect in improving segmentation accuracy when compared with human-
defined context labels.

(h) Brain tumor w/ tissue masks (i) Brain tumor w/ CoLab

w/o liver masks . 100
K-means [1]
Dilated masks [26]

Liver tumor [5] g::tj:: ’ = e s & _ X --

ColLab ) : 7). 5.2 43.6 XA
w/ model-predicted liver masks [16] ) 1.6 ) - /
w/ liver masks [5]
w/o kidney masks
K-means [1]
Dilated masks [26]
Kidney tmor [12] g::{j::

CoLab 10

w/ model-predicted kidney masks [16] 79 2 81. % 8" 7 38. “ False positives per casej= 180 False positives per case= 96 | False positives per caséys 124
w/ kidney masks [12] 79.9 78.9 54. / / /
st > s

w/o tissue masks

K-means [1] i . N

Dilated masks [26] > of
Brain tumor [33] CoLab
CoLab

CoLab : o s B Pept B 10 s "o s
max(2z, Z3, 24, Zs, Zg, Z7) max(zy, Z3, Z4, Zs)

max(zy, Z3, Z4, Zs, Zg, Z7) max(z,, Z3, 24, Z5)

zoom-in l zoom-in zoom-in

1
2
2
2
4
6
2

~J

Z.Li



|. Model-Fitting

I Robustness Underfitting under Class Imbalance

[Il. Reassurance

17/40

Results
» Examples of context labels generated could inform us on how to design optimal contextual tasks.

Model-predicted CoLab CoLab CoLab

Image Anatomy masks
5 Y anatomy masks t=2 t=4 t=6

K-means Dilated masks

TR
N
L It >

e
7

Liver tumor '
\

Brain tumor > X Unavailable

Brain lesion Unavailable Unavailable

Pancreas and s
pancreatic [t 4 | Unavailable Unavailable
[umor mass

Z.Li
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[Il. Reassurance

Improved Model-Fitting with for
Downstream Applications

Train a CNN to recognize tumor regions

rrEE
,Ar‘ r—v

T2 flair

modality F 4 r~

x64  x64  x64 x63 x128 x138 X178 y4096 x4096

| B 1
T1C .mm.\un l :7 - &
=

Brain Structure-Aware Network

modality

TN

and ReLU Max pooling

(3D Convolutional Block

(3D Transpose

E‘&su Max Pooling

Victor ==

Pick deep filter responses
Pick deep filter response ORI
from the last Feal

convolutional layer
= different scales

Z. Li o L

based Segmentation

31x31pixels Generator network  15x15 pixels 15%15 pixels

i Predict results Ground truth
Flair

e ’%ﬁgaﬁ“rr R

Generated?

[FFFED LN
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Joint Optimization of Class-Specific

I Reassurance Training- and Test-time data augmentation

Motivation

» Training-time data augmentation (TRA) and test-time data augmentation (TEA) are closely connected as both

aim to

Adopt different kinds of training-
time data augmentation
(72,....77,..7°} for training
samples with different class j

D! = {(x. y)ly: = L,

(b) Random Training-Time Data
Augmentation

— e —
Bi-level
optimization in
every training
iteration

(c) Heuristic/Learned
Training-Time Data Augmentation

(d) Heuristic/Learned Test-Time
Data Augmentation

T : Training-Time Data Augmentation
V: Test-Time Data Augmentation




Il. Reassurance Tralning- and Test-time data augmentation

Method
» A meta-learning based data augmentation framework, taking test-time transformations into
account.
. *.
* learning ° -
the status of model || === | VoL 0in(Dr) ©
parameter 6 learning gr adler;t \
\
! Typical |
: generalization |
| __ 8D .
0™* = argmin L;,4in (D7) S
0 Se
6"* = argmin L,4;(Dy) T~ Vs
0 ~-e 0

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation”, TMI, 2023.



Il Reassurance Training- and Test-time data augmentation
Method
» A meta-learning based data augmentation framework, taking test-time transformations into
account.
° . .*. .
learning iy VoLirain(T(Dr))
the status of model : ) VoLirain(Dr) © 9
parameter 6 learning gradletit v s
< — v T+
g SEhan | Typical |
K | generalization !
’0 VﬁT['val (DV) ] :- _ -ggp- _ _lk N .
67" = argemin Lirain(Dr) 6™ = argmin Ly, i, (T (Dr)) RN
0 Se

OV* = argmin L,,;(Dy)
0

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation”, TMI, 2023.



Il Reassurance Training- and Test-time data augmentation

Method
» A meta-learning based data augmentation framework, taking test-time transformations into
account.
. learning S — iy VoLirain(T (Dr'))
the status of model | | ==—> VoLirain(Dr) 6 T 9 o
parameter 0 learning gradlerit \ )
r ta-loarni Fmmmmto-- . 0
et IR | Tpieal o eeSeegoemeo
| :
K generalization | i
5 VorLoa (' (Dy)) g M | generalization gap |
T+ = argmln Lirain(Dr) 0T* = argmin L,,4n (T (D7) R T gv
0 Se
oV = argmm Lya(Dy) 67 = argmln L,oi(V(Dy)) TN~ gV

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation”, TMI, 2023.
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I Reassurance Training- and Test-time data augmentation

Results

» Consistently improve segmentation performance in various applications.

» Potential to currently used in most previous works.
Class-specific TRA improves Joint optimization of TRA and TEA improves
brain tumor segmentation cross-domain prostate segmentation

— None
None 54.6 56.3 67.2 . Heuristic [18] - 46 4
Heuristic [18] 58.4 5. 51 .4 . Heuristict [18] . 56.7
HeuristicT [18] 58.8 . 59. . Heuristict [18] 69.3
Learned [8], [29], [32] 59.3 6.6 | 6. - i« 181 | Learned? [7], [24), [27] 65.8

0%, trainine dat Site A Site B Site B

s . 50% training data PR :

Training-time Test-time o traming ¢ Training-time Test-time HD
augmentation augmentation DSC data augmentation data augmentation

3D U-Net [6] | Learned Class-Specific 62.0 (+3.6)"* DecpMedic B8 | g ooy Class-Specific! 70.0 (+0.7)™

Heuristic [18] Heuristic [18] : _. 96 | 220 = —
Learned Class-Specific Heuristic [18] 1. 70.2 . Heunshc ™ [18] izt chrfstfc [16] 6,9'4
Learned Class-Specific | Learned [22], [40] . : . . Learned Class-Specific Heuristic [16] 69.9
Joint Learned Class-Specific 62.3 (+0.6)™ Learned Class-Specific! | Learned [20], [32] 70.2
Joint Learned Class-Specifict 72.8 (+3.4)**

*p-value < 0.05; **p-value < 0.01; ~p-value > 0.05 (compared to Heuristict TRA w/o TEA or Heuristic* TRA w/ Heuristic TEA)
TWe pretrain these models with training data from site A and fine-tune with validation data from site B. *p-value < 0.05; ** p-value < 0.01; ~p-value > 0.05 (compared to Heuristic! TRA w/o TEA or Heuristic TRA W/ Heuristic TLA)
TWe pretrain these models with training data from site A and fine-tune with validation data from site B.

tWe train these models with both training data from site A and validation data from site B.
1We train these models with both training data from site A and validation data from site B.

Z. Li
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Il. Reassurance Training- and Test-time data augmentation

Results

» The learned policies would adopt larger transformations to the foreground than the background samples,

(a) Final learned policy of DeepMedic with 100% ATLAS training data
Heuristic TRA policy Heuristic sampling distribution Se rve as a key

S Training-time data augmentation Test-time data augmentation
training sample ‘ . .
Scaling RotateFrontal  RotateSagittal RotateLongitudinal MirroringSagittal 2.2% RotateSagittal 2.2% RotateFrontal Small com p one nt or winnin g ad

Identit . . . . . 2.2% RotateLongitudinal 2.5% Scaling Medium

One transformed

20.0% ey Large robust learning challenge

Sagittal
MirroringFrontal  MirroringAxial Gamma InvertedGamma IntensityShifting Frontal

r«-r. . r P L

g -
_Shifting 0.7% Noise

/ 1.5% Sharpness
’ ’ Shatping 'Blurring ’ ’ 60.3% Mirrori 2.5% Histogram

3.0% GammaCorrection

IntensityScaling Contrast Sharpness SimuLow

Joint learned class-specific sampling distribution

Training-time data augmentation for FG Training-time data augmentation for BG Test-time data augmentation

Scaling RotateFrontal ~ RotateSagittal RotateLongitudinal MirroringSagittal Scaling Rotatefrontal ~ RotateSagittal RotateLongitudinal MirroringSagittal
9 i -
. ' ’ V ' 2.4% Scaling ——{26.9% Identity Small
2.1% RotateFrontal Medium
2.1% RotateSagittal Large
MirroringFrontal  MirroringAxial Gamma InvertedGamma  IntensityShifting MirroringFrontal  MirroringAxial Gamma InvertedGamma IntensityShifting sagittal

4

1%t Place: FIT
Liu Ui, Maik Dannecker, Chen Chen, Cheng Ouyang, Zeju Li, Benjamin Hou,
Qingjie Meng, Bernhard Kainz, Daniel Rueckert

8 &b
= FeTA

Challenge

d\ { i
@m;am“ﬁ e e s . September 18, 2022

Frontal

' ' ' ' ' , ' 2.1% RotateLongitudinal
- 0.7% SimulLow Axial

IntensityScaling Contrast Sharpness SimuLow IntensityScaling Contrast Sharpness SimuLow

1.3% Sharpness

4.3% Histogram
54:4% Mirroting 2.9% GammaCorrection

I 0.7% Noise All

' ’ Sharping'Blwn‘ng ’ ' ’ , Sharping | Blurring

Z. Li
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Other Related Works to Improve Robustness

25/40

Domain Generalization
with

Interventional pseudo-correlator
augmentation (IPA) (Sec. I1I-C)

Global intensity non-linear
augmentation (GIN) (Sec. llI-B)

o B =D

Domain
invariance
blending condition

(Eq. 3)

Training image v / \ o t
~ 5
5 _ o f s |

Appearance transforms based on Image w/ Image w/ perturbated
randomly-weighted shallow networks new appearance inter-object correlations Prediction

Gaussian distribution N'(0, 1) Spatially-variable

Z.Li

Domain Generalization
with

Style Augmentation

Maximize Lgegq
€ — €, +aV, Ly, € eg+aV L,y

Style noise =.: «
v

>4l| >£;- > Eo

Style mixing Tl

x.
] — E, >
jei 4

—» Data flow

Maximize Lgegq
Amiz  Clipjg 1)(Amiz + @V, Lueg)

Encoder Segmentation decoder | MaxStyle Image decoder
» Grad flow

(a)

Z.Li

Domain Generalization for

tr

y BAVES
Non-open Classes Open Classes
—

Dzr{ o. TN }Seen Domains Seen Classes
Dee p; N ]

— Unseen Domains

Z.Li
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Confidence-based estimation

> Effect of on confidence-based model evaluation methods.
Optimization with validation set DV = {(x;, y;)}, Deployment with test set DT¢ = {x; 7€},

Group the predictions
based on predlcted class

VVVVVVVVVV
81.0

Average Confidence
Accuracy

L02
£00

:ﬁ'HFﬁﬂﬂHHH

1 2 3 4 5 6 7 8 9
Predicted Class ﬁ

Majority classes Minority classes

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores”, MICCAI, 2022.
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Confidence-based estimation

» Effect of on confidence-based model evaluation methods.
Optimization with validation set DV = {(x;, )’z)} Deployment with test set DT¢ = {x;T¢},

Global calibration under-
confidence

c 2
Group the predictions 2 H H H H H F
based on predlcted class Os ﬂm
: Calibrated Confidence
. H [:] Accuracy

I Il Il Il I

VVVVVVV'VV : 23456789

i -
HHF ”

Average Confidence
Accuracy

283 4 5 6 7 8 9
Predicted Class ﬁ

()
)
2
=
(o)
=0
<)
cu
—
=
o
]
<

Majority classes Minority classes

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores”, MICCAI, 2022.
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under Domain Shifts

Confidence-based estimation

> Effect of
Optimization with validation set DV = {(x;, y;)}\,

on confidence-based model evaluation methods.

Deployment with test set DT¢ = {x;T¢}}

i=1

810
_-908
806
5

~02
°oo

Majority classes

-------- NN NN NN RN NN EEEREEERAEEE]
- - . ] . . ] l = -

under-
confidence

under-
confidence

(lﬂ A

Global calibration Global calibration
81.0

5 0.8

§06 W% | mmmﬂm i

E* 0.4 Calibrated Confidence

@
502 H [ Accuracy
§00 | | Il | | | | |

Group the predictions

based on predicted class
Calibrated Confidence

I:I Accuracy

1 2 3 4 5 6 7 8 9
Predicted Class

’ Previous predicted error

VVVVVVVVVV : 1

'HPWHHHHH(

2 3 4 5 6 7 8 9
Predicted Class

Average Confidence
Accuracy

il il
2 3 4 5 6 7 8 9
Predicted Class ﬁ

Minority classes

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores”, MICCAI, 2022.
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III Reassurance

Confidence-based estimation

> Effect of
Optimization with validation set DV =

on confidence-based model evaluation methods.
{(xuyl)} Deployment with test set DT¢ = {x;T¢ {‘i .
under-

Global calibration
confidence

T

Calibrated Confidence
:] Accuracy

I Il Il Il Il
2 3 4 5 6 7 8 9
Predicted Class

Global calibration under-
confidence

§°6 W+ | mmmﬂm i

% 0.4 Calibrated Confidence

©
50.2 H [ Accuracy
;(‘300 | | Il | | | | |

81.0
=
3 0.8

81.0
=
308

Group the predictions <
6 0.6

based on predicted class S H H
€02

----------- e e e e e e e el e o

%)
0.0
1 2 3 4 5 6 7 8 9

Predicted Class

_’PI evious predlcted error
Class-Specific calibration

o iiiiiii&ii
010 - -

: 3

'o 0.8
8 . 6 = H ﬂ H H H ( Class-Specific calibration
Average Confidence § 1.0

Accu racy

=
@)
o
3
o

Majority classes

2 3 4 5 6 7 8 9
Predicted Class ﬁ

{r

Minority classes

Nk

sulll

Calibrated Confidence
I:] Accuracy

Il Il Il Il
2 3 4 5 6 7 8 9
Predicted Class

506
O

I

Calibrated Confidence
(1 Accuracy

I I Il I I I

Il I

1 2 3 4 5 6 7 8 9

Our predicted error Predicted Class

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores”, MICCAI, 2022.
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Il. Reassurance under Domain Shifts

Method

» Introduce within the framework of performance estimation for imbalanced datasets.

Orniginal/Class-Specific Temperature Scaling (TS)

. . Class-Specific temperature > Calibration process
Global temperature 7

Logit z;; l: Expected maximum probability

o(z/T7): Piy N , e
oz /T, B Probability p;; Calibrated Probability p;;
Zi/E g p[.: —

Original/Class-Specific Average Thresholded Confidence (ATC)

Class-Specific e Class-Specific threshold
difference d = {ds, d2) Global threshold ¢ £ = (t.% 65%)

'P:1 i P 2 | 4 Pa P; Pi2>t"] D; 2 | Lpita) By
pilm_ . 'vA: i i’i ﬁi::_ Pi: Piz>t"] ‘.:- P Diz>tz"] p'::_

Global difference d

Class-Specific temperature  Class-Specific threshold
T ={T,".T,") t"={t,".t;,7}

Z.Li
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Performance Estimation
Il. Robustness ) ) 31/40
Il. Reassurance under Domain Shifts

Results

» Consistently improve model estimation accuracy, especially for

Task Classification Segmentation
Training dataset ) / / S Prostate
Test domain shifts | Sy : Sy Synthetic Natural
AC 31.3 + 8. 18.7 4+ 5.9
QC [30] 3. . 52166 | 193 £ 7.1
TS [12] 57+ 5.6 3. 4.: 12.1 + 8.3 9.7 + : : 9.2 4+ 49
VS [12] 3.8+ 2.1 13.6 + 9.6 11.2 + 4.9
NORCAL [29] 7.6 + 3.8 13.7 + 9.6 7.3+ 4.7
CS TS 11.97 + 8.0 7.8 + 4.8
DoC [11] 15.3 + 9.7 13.9 + 6.5
CS DoC 14.7° £ 9.2 . ). 12.1" £ 5.9
ATC [10] 1.6 /. ). .8 . 3.0 16.7 £ 5.3
CS ATC ] '
TS-ATC [10,12] : & 16.7 + 5.3
CS TS-ATC 4. 5.

. 4.2*% 4+ 2.2
*p-value < 0.05; **p-value < 0.01; “p-value > 0.05 (compared with their
class-agnostic counterparts)

Prostate Natural

Z.Li
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Software

» Based on our algorithm, we develop an open-source software, MOVAL, to help practitioners evaluate their
model performance.

@

Reliable

MOVAL facilitates the
assessment of pre-trained
models across diverse
scenarios, aiding practitioners
in estimating performance.

Versatile

MOVAL not only calculates
but also calibrates various
confidence scores beyond the
maximum class probability.

4

Effective

MOVAL expands existing
performance estimation algorithms
and demonstrates state-of-the-art
results, particularly on real-world
long-tailed datasets.

|

User-Friendly

MOVAL can be effortlessly
installed as a Python module
and supports the NumPy array
data format.

T

Il
Universal

MOVAL accommodates various
applications within a unified
framework, encompassing tasks
such as classification, 2D

segmentation, and 3D segmentation.

R

Modular

MOVAL comprises distinct
modules for confidence score
calculation, calibration, and
optimization, allowing for easy
extension and customization.

»
7]
n
O
o
-]
=2
5

@

<
[+

import moval

import numpy as np

logits = np.random.randn(1000, 10)

gt = np.random.randint(0, 10, (1000))
moval_model = moval.MOVAL()
moval_model.fit(logits, gt)

estim_acc = moval_model.estimate(logits)

Confidence Scores
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[Il. Reassurance

for Stress Testing with
under Federated Setting Image Segmentation Concerns

é
Yi
Calibrated
Segmentation prediction
network

el | () y;l—> fe—
Softmax {Diff.

Vy,
Shapebr/e'sidual
Aleatoric-by-augmentation module

O =2 p(X)— fo — (uz.57)— 9o ”’T;J;ﬁn{,.

map

Estimated

input distribution Calibration

network

Z. Li Z. Li A
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Summary

> and , Which exist simultaneously in real world datasets, limit the
performance of modern machine learning models when deployed to medical image segmentation.

» Class imbalance cause under-segmentation because of , While over-
segmentation because of

Model Fitting: Understanding Model Fitting: Understanding Robust and Reassurance: Effect

Ideal segmentation overfitting of under-represented underfitting of heterogenous of class imbalance on out-of-
foreground samples background samples distribution generalization
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Summary

> loss functions and regularization techniques help counter overfitting under class
imbalance by enlarging foreground sample variances.

> help alleviate underfitting under class imbalance.

>

are beneficial for improving data augmentation and tackling domain shifts.

Asymmetric Context Label Learning augmentation framework with estimation with class-
class-specific transformations specific confidence scores

regularization (CoLab)

Model Fitting: Model Fitting: l Robust: An automatic data l Reassurance: Performance




Model
Performance

Deployment
Environment

Optimization
Algorithms

Data
Distributions

Enable of machine
learning in medical image segmentation!

2= : Calibrating model
| | prediction with to match class-
wise performance.

: Aligning the training
| | and test data distribution with
data augmentation.

| | : Alleviating class
imbalance with advanced

E learning strategies.

[ —
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Building Macaque Connectivity Atlas
Cell Semi-supervised Registration to b Bt
Segmentation Learning structure MRI atlas that is both
fine-grained and
End-to-end neural networks such quantitative

as U-Net / Transformer. Propose an algorithm
that enhances the quality

of pseudo-labelling for

imbalanced semi- l . 3 ‘

supervised learning. b

b i _d

Registration




Future Vision: Towards Building Foundation Models
for Neuro-oncology and Neuroscience
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Direction 3: Developing foundation models for brain _
. tumor analysis and computational neuroscience | -

%Y - Direction-2: Building transfer learning tools for . ---- | -

!!!n!!! foundation models to ensure both safety and flexibility

Direction 1 Self—sﬁperviseﬂ pre-tréining st?rategicsé for |:
'multi-task and multi-médal foundation ‘models: f

3 Developmg next-generatlon hlgh-performance multl-taskmg S
- foundation models for neuro-oncology and neuroscience :
> Bulldlng tools for transfernng knowledge from foundatlon E
S models to enhance med1ca1 unage analy51s e SRR
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