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Medical Image Segmentation
Ø Identify groups of pixels that go together for medical imaging (e.g. MRI, CT, ultrasound…).
Ø A critical step to transfer the power of machine learning into the clinical diagnosis process.

Figure credited to D. Rueckert, J.A. Schnabel. “Model-based and data-driven strategies in medical image computing“, P IEEE, 2019.
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Data 
Distributions

Optimization 
Algorithms

Deployment 
Environment

Model
Performance 

Model-Fitting: Specification 
Failure Problem.

Robustness: Goal Mis-
generalization Problem.

Reassurance: Expectation 
Over-optimism Problem.

The model is unreliable 
because of misaligned goals!
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Specification Failure Reason: Class Imbalance
Ø  Class imbalance, which refers to the imbalanced distributions of samples from different categories, cause 

difficulties for machine learning models to learn well.
(a) Brain lesion (b) Brain tumor (glioma) (c) Brain tumor (vestibular schwannomas)

(d) Liver tumor (e) Kidney tumor (f) Colon tumor

(g) Pancreas tumor (h) Abdominal organs (i) Prostate
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Goal Mis-generalization Reason: Domain Shifts
Ø  Domain shift is a common issue in medical imaging as the medical images can be collected from different 

clinical sites. As data-driven methods, deep neural network may not generalize well under domain shifts.

Example from Q. Liu et al. "Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains “, MICCAI, 2020.
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Expectation Over-optimism Reason: Model Uncalibration
Ø As probabilistic model, neural network produces the probability of the predictions. However, modern 

deep neural networks are known to over-confident and uncalibrated about the predictions. 

Entropy of Predicted Probability

Entropy of Predicted Probability
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I. Model-Fitting
II. Robustness
III. Reassurance

Observations
Ø Class imbalance causes under- and over-segmentation.
Ø Understanding the effects of class imbalance in segmentation.

High 
accuracy

Over-segment 
(low precision)

Under-segment
(low sensitivity)
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I. Model-Fitting
II. Robustness
III. Reassurance

Analysis
Ø With less training data, performances decline due to the drastic reduction of sensitivity, while precision is 

retained.

High 
accuracy

Under-segment
(low sensitivity)

Z. Li et al. “Analyzing overfitting under class imbalance in neural networks for image segmentation“, TMI, 2020. [MICCAI Student Travel Award]
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I. Model-Fitting
II. Robustness
III. Reassurance

Z. Li et al. “Analyzing overfitting under class imbalance in neural networks for image segmentation“, TMI, 2020. [MICCAI Student Travel Award]

Analysis
Ø CNN maps training and testing samples of the background class to similar logit values.
Ø However, mean activation for testing data shifts significantly for the foreground class towards and 

sometimes across the decision boundary.
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I. Model-Fitting
II. Robustness
III. Reassurance

Method and Results
Ø We make the logit activations of foreground class far away from the decision boundary by setting bias for 

the foreground class in different ways.

Z. Li et al. “Analyzing overfitting under class imbalance in neural networks for image segmentation“, TMI, 2020. [MICCAI Student Travel Award]
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I. Model-Fitting
II. Robustness
III. Reassurance

Z. Li et al. “Analyzing overfitting under class imbalance in neural networks for image segmentation“, TMI, 2020. [MICCAI Student Travel Award]

Results
Ø Asymmetric modifications lead to better separation of the logits of unseen foreground samples.
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I. Model-Fitting
II. Robustness
III. Reassurance

Ø With heterogeneous background, performances decline due to the drastic reduction of precision, while 
sensitivity is retained.

Over-segment 
(low precision)

High 
accuracy

Analysis

Z. Li et al. “Context label learning: improving background class representations in semantic segmentation“, TMI, 2023.
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I. Model-Fitting
II. Robustness
III. Reassurance

Z. Li et al. “Context label learning: improving background class representations in semantic segmentation“, TMI, 2023.

Analysis
Ø Neural networks could not map the heterogeneous background samples to compact clusters in feature space. 
Ø As a result, the logit activations of background would approach and even move across the decision boundary. 
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I. Model-Fitting
II. Robustness
III. Reassurance

Method and Results
Ø We propose Context label learning (CoLab).
Ø We train an auxiliary network as a task generator, along with the primary segmentation model, to 

automatically generate context labels that positively affect the ROI segmentation accuracy.

Z. Li et al. “Context label learning: improving background class representations in semantic segmentation“, TMI, 2023.

Liver tumor 
segmentation

Brain tumor 
segmentation

DSC

HD
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I. Model-Fitting
II. Robustness
III. Reassurance

Z. Li et al. “Context label learning: improving background class representations in semantic segmentation“, TMI, 2023.

Results
Ø Similar and sometimes better effect in improving segmentation accuracy when compared with human-

defined context labels.
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I. Model-Fitting
II. Robustness
III. Reassurance

Z. Li et al. “Context label learning: improving background class representations in semantic segmentation“, TMI, 2023.

Results
Ø Examples of context labels generated could inform us on how to design optimal contextual tasks.
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I. Model-Fitting
II. Robustness
III. Reassurance

Improved Model-Fitting with 
Multi-Task Learning

Z. Li et al. “Deepvolume: brain structure and 
spatial connection-aware network for brain
MRI super-resolution“, TCybern, 2019.

Z. Li et al. “Deep learning based radiomics
(DLR) and its usage in noninvasive idh1 
prediction for low grade glioma“, Sci. Rep., 
2017.

Z. Li et al. “Brain tumor segmentation using
an adversarial network“, MICCAI-Brainlesion
workshop, 2017.

Feature Re-using for 
Downstream Applications

Generative Model 
based Segmentation



Joint Optimization of Class-Specific 
Training- and Test-time data augmentation
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I. Model-Fitting
II. Robustness
III. Reassurance

Motivation
Ø Training-time data augmentation (TRA) and test-time data augmentation (TEA) are closely connected as both 

aim to align the training and test data distribution.

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation“, TMI, 2023.
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Training- and Test-time data augmentation
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I. Model-Fitting
II. Robustness
III. Reassurance

Method
Ø A meta-learning based data augmentation framework, taking test-time transformations into 

account.

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation“, TMI, 2023.
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Training- and Test-time data augmentation
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I. Model-Fitting
II. Robustness
III. Reassurance

Method
Ø A meta-learning based data augmentation framework, taking test-time transformations into 

account.

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation“, TMI, 2023.
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Training- and Test-time data augmentation

22/40
I. Model-Fitting
II. Robustness
III. Reassurance

Method
Ø A meta-learning based data augmentation framework, taking test-time transformations into 

account.

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation“, TMI, 2023.
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Training- and Test-time data augmentation
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I. Model-Fitting
II. Robustness
III. Reassurance

Results
Ø Consistently improve segmentation performance in various applications.
Ø Potential to replace the heuristically chosen augmentation policies currently used in most previous works.

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation“, TMI, 2023.

Class-specific TRA improves 
brain tumor segmentation

Joint optimization of TRA and TEA improves 
cross-domain prostate segmentation
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Training- and Test-time data augmentation

24/40
I. Model-Fitting
II. Robustness
III. Reassurance

Results
Ø The learned policies would adopt larger transformations to the foreground than the background samples, 

implicitly alleviating the class imbalance issue.

Z. Li et al. “Joint optimization of class-specific training- and test-time data augmentation in segmentation“, TMI, 2023.
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Serve as a key 
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I. Model-Fitting
II. Robustness
III. Reassurance

C. Ouyang, C. Chen, S. Li, Z. Li et al.
“Causality-inspired single-source domain
generalization for medical image
segmentation“, TMI, 2022.

C. Chen, Z. Li et al. “MaxStyle: Adversarial
style composition for robust medical image
segmentation“, MICCAI, 2022.

X. Gu, Y. Guo, Z. Li et al. “Tackling long-tailed
category distribution under domain shifts“, 
ECCV, 2022.

Domain Generalization 
with Random Kernels

Domain Generalization 
with Adversarial Training

Domain Generalization for 
Long-Tailed Classification
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under Domain Shifts
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I. Model-Fitting
II. Robustness
III. Reassurance

Confidence-based estimation
Ø Effect of class imbalance on confidence-based model evaluation methods.

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores“, MICCAI, 2022.
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I. Model-Fitting
II. Robustness
III. Reassurance

Confidence-based estimation
Ø Effect of class imbalance on confidence-based model evaluation methods.

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores“, MICCAI, 2022.



Performance Estimation
under Domain Shifts

28/40
I. Model-Fitting
II. Robustness
III. Reassurance

Confidence-based estimation
Ø Effect of class imbalance on confidence-based model evaluation methods.

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores“, MICCAI, 2022.
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I. Model-Fitting
II. Robustness
III. Reassurance

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores“, MICCAI, 2022.

Confidence-based estimation
Ø Effect of class imbalance on confidence-based model evaluation methods.



Performance Estimation
under Domain Shifts
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I. Model-Fitting
II. Robustness
III. Reassurance

Method
Ø Introduce class-wise calibration within the framework of performance estimation for imbalanced datasets.

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores“, MICCAI, 2022.



Performance Estimation
under Domain Shifts
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I. Model-Fitting
II. Robustness
III. Reassurance

Results
Ø Consistently improve model estimation accuracy, especially for segmentation tasks.

Z. Li et al. “Estimating model performance under domain shifts with class-specific confidence scores“, MICCAI, 2022.
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I. Model-Fitting
II. Robustness
III. Reassurance

Software
Ø Based on our algorithm, we develop an open-source software, MOVAL, to help practitioners evaluate their 

model performance.

https://github.com/ZerojumpLine/MOVAL/
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I. Model-Fitting
II. Robustness
III. Reassurance

F. Wagner, Z. Li et al. “Post-deployment 
adaptation with access to source data via 
federated learning and source-target 
remote gradient alignment”, MICCAI-
MLMI workshop, 2023.

C. Ouyang, S. Wang, C. Chen, Z. Li et al.
“Improved post-hoc probability calibration
for out-of-domain MRI segmentation“, 
MICCAI-UNSURE workshop, 2022.

M. Islam, Z. Li et al. “Progressive stress 
testing of model robustness in medical image
classification“, MICCAI-UNSURE workshop, 
2023.

Model Calibration for 
Image Segmentation

Stress Testing with 
Fairness Concerns

Post-deployment Adaption 
under Federated Setting
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Ø  Class imbalance and domain shifts, which exist simultaneously in real world datasets, limit the 
performance of modern machine learning models when deployed to medical image segmentation. 

Ø  Class imbalance cause under-segmentation because of overfitting foreground samples, while over-
segmentation because of underfitting background samples.

Summary

(c) Chapter 4: Understanding 
underfitting of heterogenous 

background samples

(a) Ideal 
segmentation

(b) Chapter 3: Understanding 
overfitting of under-represented 

foreground samples

(d) Chapter 6: Effect of class 
imbalance on out-of-distribution 

generalization
Ideal segmentation 

Model Fitting: Understanding 
overfitting of under-represented 

foreground samples

Model Fitting: Understanding 
underfitting of heterogenous 

background samples

Robust and Reassurance: Effect 
of class imbalance on out-of-

distribution generalization
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Ø  Asymmetric loss functions and regularization techniques help counter overfitting under class 
imbalance by enlarging foreground sample variances.

Ø  Context labels help alleviate underfitting under class imbalance.
Ø  Class-specific parameters are beneficial for improving data augmentation and tackling domain shifts.

Summary

(a) Chapter 3: 
Asymmetric 

regularizations

(b) Chapter 4: 
Context Label 

Learning (CoLab)

(c) Chapter 5: An automatic data 
augmentation framework with 
class-specific transformations

(d) Chapter 6: Performance 
estimation with class-

specific confidence scores

Model Fitting: 
Context Label Learning 

(CoLab)

Robust: An automatic data 
augmentation framework with 
class-specific transformations

Reassurance: Performance 
estimation with class-

specific confidence scores

Model Fitting: 
Asymmetric 

regularization
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Data 
Distributions

Optimization 
Algorithms

Deployment 
Environment

Model
Performance 

Model-Fitting: Alleviating class 
imbalance with advanced 
learning strategies.

Robustness: Aligning the training 
and test data distribution with 
data augmentation.

Reassurance: Calibrating model 
prediction with to match class-
wise performance.

Enable robust and safe deployment of machine 
learning in medical image segmentation!
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Post-doc Working on 
Building Macaque Connectivity Atlas

38/40

Cell 
Segmentation

Semi-supervised 
Learning

Registration to 
structure MRI

The first tracer 
atlas that is both 
fine-grained and 

quantitativeEnd-to-end neural networks such 
as U-Net / Transformer. Propose an algorithm 

that enhances the quality 
of pseudo-labelling for 
imbalanced semi-
supervised learning.

Registration



Future Vision: Towards Building Foundation Models 
for Neuro-oncology and Neuroscience 
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