London

Improving the Generalization
Capability for
Medical Image Segmentation

Zeju Li
BioMedIA Group, Department of Computing, Imperial College London

May 25th 2020



Introduction

» Short Bio

» Brief Intro of Medical Image Segmentation
» Previous Researches

» Open Problems

Improving Generalization Capability

» Generalization in Deep Learning
» Overfitting under Class Imbalance
» Automatic Data Augmentation

Conclusion




Education

>_2018.1O — Current Imperlal COIIege

» PhD in Computing, Imperial College London, London London
» 2015.9-2018.7

» Master in Biomedical Engineering, Fudan, Shanghai
» 2011.9-2015.7

» Bachelor in Electronic Engineering, Fudan, Shanghai

Intern

» 2019.7 - 2020.4
» Huawei Noah’s Ark Lab, London
» 2018.7 - 2018.9
, ICT, Beijing




Goal
» ldentify groups of pixels that go together.

https://biomedia.doc.ic.ac.uk/software/deepmedic/



https://biomedia.doc.ic.ac.uk/software/deepmedic/

Brief Intro of Medical Image Segmentation:s:s

Importance Applications
» The most popular medical imaging task. > Reduce tedious annotations.
are about » A prerequisite for following-up tasks.
Medical Image Segmentation. / CT/ Xray/ Ultrasound/ Histology/ Fundus Photography.
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https://grand-challenge.org/challenges/

Brief Intro of Medical Image Segmentation«:

Methodologies

» Deformable models based segmentation
» Snake
» Level-set
» Statistical inference based segmentation
» Markov random field
» Graph cut
» Registration based segmentation
» Multi-atlas
» Discriminative classifier based segmentation

7 = Fo(X
v GZ((Z% Y = Gy (Fo (X))

> Random forests
» Sparse representation




Segmentation coherence: problem

» The pixel segmentation of neural network is independent of another pixel.

Y1 = G(p(FB(xl))
Do not have a strong constrain to maintain similar class

V2 = Gy (Fe (xz))

» The segmentation results / shape prior.
Image \YETIVE] CNN I \YERUE] CNN
g segmentation results Mage segmentation results

[Z. Li, et al. ) Healthc Eng 2017]
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Previous Researches: Part one

Segmentation coherence: methods

(CRF) » Add for high dimension data

» Integrate

Using CRF model to get hard label

Using settled net to get up-
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revious Researches: Part two e

Integrated segmentation: problem

» Medical imaging pipeline consists of , Which are optimized independently.
» There could be some and among different processes.
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Acquisition Reconstruction Analysis Diagnosis

[D. Rueckert, J. Schnabel. Proc. IEEE 2019]

segmentation
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Integrated segmentation: methods

» Combine the process of

Z.Li

Diagnosis

» Combine the process of
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Interpretability Clinical Relevance

» Uncertainty estimation » Large-scale validation
» Explainable deep learning » Beyond imaging data

Weak Label Usage Robust Learning
» Semi-supervised/ unsupervised learning » Domain adaptation
» Self-supervised learning » Domain shifts

» Active learning » Data heterogeneity

» Noise-label learning

Generalization Capacity

» Transfer learning

» Model design

» Limited data training
» Data augmentation



1.Generalization

csmance - (G@neralization in Deep Learning _

3.Data augmentation

Generalization gap

» Generalization errors impede deep learning applications.

Generalization gap

35.4%

i
) ‘validation
, accuracy

—Training error Test error
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3.Data augmentation

Generalization error

» Generalization errors in deep learning come from instead of underfitting.
» Generalization is believed to be smaller than the penalties of model and dataset complexities.
» As the effect of model in unclear, we want to improve the generalization capability in the

Generalization gap
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[K. Kawaguchi, L. Kaelbling,
Y. Bengio arxiv:1710.05468] 0
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[C. Zhang et al. ICLR 2017]




1.Generalization

aesmne - (Generalization in Deep Learning s

3.Data augmentation

Challenges for medical imaging: a data perspective

» Target tissues are always very small, leading to
» Neural networks need to generalize well.

Overfitting under class imbalance Large dataset requirement

& b o= —

Available Positive Negative Desired
dataset samples samples dataset




1.Generalization ove rfitting

2.Class imbalance

3.Data augmentation under Class Imbalance
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Data imbalance in segmentation: problem

» Tumor and organs are relatively small in medical imaging.
» Small portions of training data lead to :
» The network behavior of overfitting under class imbalance is not clearly understood.

Brain tumor segmentation ' Brain lesion segmentation Small organs segmentation Kidney tumor segmentation
FG:BG=1:204 FG:BG =1:590 FG:BG =1:2403 FG:BG=1:753 FG:BG=1:801 FG:BG=1:1900 FG:BG=1:123 FG:BG=1:572
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2.Class imbalance 16/35
3.Dat tati
*ta augmentation under Class Imbalance
Ana|y5|5 High DSC Low precision Low Sensitivity
> The segmentation is evaluated by DSC: (over-segment) | (under-segment)
2/ __ o sensilivily-precision O
DSC =2 sensitivity4precision °
» With less training data, performances decline due to the drastic , While precision is

retained.

=== DSC of test samples =@ Sensitivity of test samples Precision of test samples =& DSC of training samples
X Brain tumor core . Brain lesion ; Gallbladder . Vena cava . Kidney tumor

3 0.9 ‘-‘-"/

— 1
50%  20% 5 100%

Amount of training data

Z.Li




1.Generalization ove rfitting

2.Class imbalance

3.Data augmentation under Class Imbalance
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Analysis

» CNN maps training and testing samples of the background class to similar logit values.
» However, significantly for the foreground class towards and

sometimes across the decision boundary.

Train ® Test Mean Value Decision Boundary Train _® Test Mean Value ion Boundary
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DeepMedic with BRATS




1.Generalization

2.Class imbalance ove rfitti n g
3.bata augmentation under Class Imbalance
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Analysis

» CNN maps training and testing samples of the background class to similar logit values.
> However,

significantly for the foreground class towards and
sometimes across the decision boundary.

Train @ Test Mean Value Decision Boundary
Tumor w/ 100% data Tumor w/ 50% data

Tumor w/ 20% data

Tumor w/ 10% data

# N

Tumor w/ 5% data

*

Kidney w/ 100% data Kidney w/ 50% data Kidney w/ 20% data Kidney w/ 10% data Kidney w/ 5% data

BG w/ 10% data BG w/ 5% data

Amount of training data

3D U-net with KiTS




1.Generalization ove rfitting

2.Class imbalance

3.Data augmentation under Class Imbalance
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Method

» We make the logit activations of foreground class far away from the decision boundary by
in different ways.

. — ~ , rr .. , . ..
B :Foreground / Background |_|:Augmented foreground / background 1/ 1 Original / Regularized decision boundary
- - - - - | ] ] - - -

Original/Asymmetric large margin loss Original/Asymmetric focal loss

i v
| | Caduy||2

Adversarial
training with  dag, = argm:

I"f'. || 0

Mixup




1.Generalization ove rfitting

2.Class imbalance

3.Data augmentation under Class Imbalance

20/35

Results

» The proposed variants of regularization and techniques can moderate overfitting and improve performance.

Method 10% training 20% training 50% training
o C DSC | SENS

Vanilla - CE [16] 0.4 0.79
Vanilla - CE - 80% tumor 0.46 (.38 0.77
Vanilla - F1 (DSC) ).48 0.3¢ 0.82
Vanilla - F2 [12] ).3¢ 0.79 3
Vanilla - F4 [12] 0.79 0.6 ).5¢ 0.66 0.63 0.8
Vanilla - F8 [12] .46 0.4( 0.80 0.60 ).54 0.65 0.6 H 80
Large margin loss [23] ).46 0.38 .6 ).54 0.6 .63 0.86
Asymmetric large margin loss ] .76 | 0.6 ( ).68 ).8 | 0.85
Focal loss [21] 46 0.63 .56 ). ).6 : ).85
Asymmetric focal loss 0.5 | 0.66 .6 7 0.7¢
‘ ning [9]
Asy-nnnetm_ adversarial training |
Mixup [35]
Asymmetric mixup |
|

Asymmetric combination
DeepMedic with BRATS




1.Generalization ove rfitting

2.Class imbalance

3.Data augmentation under Class Imbalance
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Results

» The proposed variants of regularization and techniques can work well with existing regularization techniques.

% training
Method idney Kidney tumor Kidney idney tumor

Vanilla - w/ augmentation [15]
Vanilla - w/o augmentation
Vanilla ymmetric augmentation

ge margin loss [23]
Asymmetric large margin loss

2 9]
. ; al training
Mixup [35]
Asymmetric mixup
nmetric combination
aining
Method idney Kidney tumor Kidney Kidney tumor
S SENS | PRC | DSC | SENS
Vanilla - w/ augmentation ).96
Vanilla - w/o augmentation
Vanilla - asymmetric augmentation
arge margin loss [23]
Asymmetric large margin loss
Focal los:
Asymmetric focal loss
rsarial training [9]
Asymmetric adv al training
ixup [35]
Asymmetric mixup
Asymmetric combination

3D U-net with KiTS (1




1.Generalization
2.Class imbalance
3.Data augmentation

Overfitting
under Class Imbalance
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Results

» Asymmetric modifications lead to better separation of the logits of unseen foreground samples.

Vanilla

IN

w/o
augmentation

Original/asymmetric

large margin

Original/asymmetric
augmentation

Train ® Test Mean Value
Original/asymmetric
loss focal loss

Decision Boundary
Original/asymmetric

adversarial training mixup

_L\ lﬁ\

4 %

Train ® Test

Original/asymmetric Original/asymmetric
large margin loss focal loss

Mean Value Decision Boundary

Original/asymmetric
adversarial training

x

Original/asymmetric

Original/asymmetric

Asymmetric
combination

K




1.Generalization ove rfitting

2.Class imbalance

3.Data augmentation under Class Imbalance
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Conclusion

» Overfitting under class imbalance leads to :

» The distribution of logit activations when processing unseen test
samples of an towards and
even across the decision boundary.

» We propose several asymmetric techniques based on our
observations of logit distribution.

can be a valuable tool for practitioners to
study overfitting and other behaviour of different models.

Overfitting under class imbalance

Available Positive Negative
dataset samples samples
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3.Data augmentation for Data Augmentation

Data augmentation is useful, but..

> It needs to design.
» Optimal strategies are and difficult to hand engineer.

Liver lowres Liver fullres Hippocampus |Prostate Lung nodule Pancreas
Vanilla nnU-Net ! 0.65 0.65
Batch norm instead of Inst. norm e -14.2%| -3.7%
No feature map normalization 3.0% -100.0%
RelLU % r A -0.4% 0.5%
4.2% -11.3%
: . 0% ! 0.0% -25.4% -8.8%
Only dice loss -2.5% -10.1%| -0.3% -11.5%| 1.6%

[F. Isensee et al. arxiv:1904.08128]




2.Class imbalance
3.Data augmentation

for Data Augmentation

25/35

_I\_llethod

» We aim to learn the data augmentation strategy by drawing transformations from
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1 Generalization Learning the Sampling Distribution

2.Class imbalance

26/35
3.D ' 1
— for Data Augmentation
Method
» We aim to close this generalization gap explicitly by learning a probability distribution of data augmentations
P based on

the status of model __ leaming > 0 e — o
arameter @ e . I L % VGLt‘rain (dqp (T))
pare learning gradient VgL, m(T) QT
—so- -3 \

meta-learning

-IIIIIIIIIIII)-

;' VPLva.l (V)

A p: transformations with augmentation parameter P
P g
01, 8,,: the optimal @ for training data 7 or validation data V'




wenceizion — Learning the Sampling Distribution
for Data Augmentation

3.Data augmentation

27/35

Method

» The method mainly contains three
steps in one iteration:
» Sample a data augmentation

Training set ... f\ Sampling distribution Validation g
strategy; '

of augmentation

elog(pi)+gr  alog(p)+gi

Ap = Alargmax(

; Y i elogPe)+ar
> U p date the se gmen tation model Forward sl Choose augmentations =====- »  Optimization step JP
to f 2 ’, Sample a data augmentation strategy

with the Gumbel distribution g Update 6 to 6" with an
optimization step using
the augmented training
set Ap(T)

H"’ — H - ﬂqu‘]i”'{ﬁn(fr:} [\:qj‘ {T”j

» Optimize P with meta-gradients

Optimize P based on the

by evaluatin g V. Calculate the loss g @ meta-gradients
® from validation set ¥ VeLyar (fer (V)

P = P! _ﬁvf" -z‘:l‘-:'z!' [Jf H'fr”

Meta-gradients
onV wrt P:
VPLval (fe’(v))

Backward
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2.Class imbalance 28/35
3.D ' 1
— for Data Augmentation
Results: Proof of Concept
> We to the augmentation set for CIFAR10 based on wide residual net.

Our method learns to decrease their probabilities during training.
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1 Generalization Learning the Sampling Distribution

2.Class imbalance

3.Data augmentation for Data Augmentation
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Results: Medical Image Segmentation

» Our learned augmentation policy consistently improves the performance on all three segmentation tasks.

Lesion . Kidney Tumor
training data ’

SENS SENS ) DSC | SENS | PRC
w/0 augment
heuristic Kan tal. (2017) | 43. heuristic Kam tal. (2017)
random Cubuk et al. (2019) 42.0 random Cubuk et al. (2

learmed leamed 8 DeepMedic with KiTS
DeepMedic with ATLAS |y 512 heuristic Kan 054 | 599

random Cubuk et al. (2019) 516 random Cubu
learned 53. learned
64.2
64.4 100% heuristic Kamni :
63.4 " random Cubuk et al. (2019)
68.9 learned

40%

DSC
71.2 O 5. 61.¢ 8().4 57.6 77.5
sas et al. 7) i 30.7 03. R 67.5 83. y7.¢ 2.8 81.3
random Cubuk et al. ( ) . 30.9 04.2 4. 71.0 84 .2 9.5 6.3 80.6
learned 87.. 83.0

heuristic Kamnitsas et al.

DeepMedic with BRATS

random Cubuk et al. (

learned
ugment
heuristic Kamnitsas et al. (2017) | 89.8
random Cubuk et al. (2019) 90.0 3C 30.4
learned 90.2 $8.4 81.( 80.0

100%




1 Generalization Learning the Sampling Distribution

2.Class imbalance

3.Data augmentation for Data Augmentation
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Results: Medical Image Segmentation

» The learned probability distributions seem to reflect well the type of data harmonization that has been
carried out by the providers of the datasets.
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1.Generalization
2.Class imbalance
3.Data augmentation

Learning the Sampling Distribution
for Data Augmentation
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Results: Medical Image Segmentation

» The optimal augmentation strategies varied between , and
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1 Generalization Learning the Sampling Distribution

2.Class imbalance

3.Data augmentation for Data Augmentation
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Conclusion

» We propose to automate the process of data augmentation by

with . (just twice the
time of normal training!) Large dataset requirement
» We can provide optimal augmentation strategies for different
application scenarios.  —
» |In our case, are more likely to be chosen

than intensity transformations.

» Random augmentation is a very strong baseline.

> Different , , favour different
data augmentation strategies.




Take home message

» Medical image segmentation is a well-studied research area, but there are still many open problems
(opportunities).
» We are focusing on improving the generalization capacity of neural networks, which is
for medical image segmentation, from the :
» We observe the logit distribution of image segmentation and propose asymmetric techniques
to counter :
» We propose to learn the sampling distribution of and provide optimal
augmentation strategies.




Model

» nnU-net
» https://github.com/MIC-DKFZ/nnUNet
» DeepMedic
» https://github.com/deepmedic/deepmedic

Dataset

» Grand challenge
» https://grand-challenge.org/
> BRATS
» https://www.med.upenn.edu/sbia/brats2018/data.html
> KiTS
» https://kits19.grand-challenge.org/data/
> ATLAS
» http://fcon 1000.projects.nitrc.org/indi/retro/atlas.html
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https://grand-challenge.org/
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https://kits19.grand-challenge.org/data/
http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html

Contact: zeju.lil8@imperial.ac.uk



