

Imperial College London

Improving the Generalization Capability for Medical Image Segmentation

Zeju Li BioMedIA Group, Department of Computing, Imperial College London

May 25th 2020

Overview

Introduction

- Short Bio
- Brief Intro of Medical Image Segmentation
- Previous Researches
- > Open Problems

Improving Generalization Capability

- Generalization in Deep Learning
- Overfitting under Class Imbalance
- Automatic Data Augmentation

Conclusion

Short Bio

Education

- ➢ 2018.10 − Current
 - PhD in Computing, Imperial College London, London
- ▶ 2015.9 2018.7
 - > Master in Biomedical Engineering, Fudan, Shanghai
- > 2011.9 2015.7
 - > Bachelor in Electronic Engineering, Fudan, Shanghai

Intern

- ▶ 2019.7 2020.4
 - Huawei Noah's Ark Lab, London
- > 2018.7 2018.9
 - MIRACLE, ICT, Beijing

Imperial College London

Brief Intro of Medical Image Segmentation^{4/35}

Goal

- Identify groups of pixels that go together.
- Accuracy and efficiency.

Brief Intro of Medical Image Segmentation 5/35

Importance

- > The most popular medical imaging task.
- 40% of MICCAI papers are about Medical Image Segmentation.

Applications

- Reduce tedious annotations.
- A prerequisite for following-up tasks.
- > MRI/ CT/ Xray/ Ultrasound/ Histology/ Fundus Photography.

Brief Intro of Medical Image Segmentation 6/35

Methodologies

- > Deformable models based segmentation [T. McInerney and D. Terzopoulos D. MedIA 1996]
 - Snake [C. Xu, J. Prince TIP 1998]
 - Level-set [C. Li et. al. CVPR 2005]
- Statistical inference based segmentation [D. Pham, C. Xu, and J. Prince AnnuRev Biomed Eng 2000]
 - Markov random field [Y. Zhang, M. Brady, S. Smith TMI 2001]
 - Sraph cut [Y. Boykov, O. Veksler, R. Zabih TPAMI 2001]
- Registration based segmentation [J. Iglesias and M. Sabuncu MedIA 2015]
 - Multi-atlas [P. Aljabar Neuroimage 2009]
- Discriminative classifier based segmentation

$$\begin{cases} Z = F_{\theta}(X) \\ Y = G_{\varphi}(Z) \end{cases} \qquad \qquad Y = G_{\varphi}(F_{\theta}(X))$$

- Random forests [L. Breiman Machine learning 2001]
- Sparse representation [J. Wright TPAMI 2008]
- Deep learning [O. Ronneberger, P. Fischer, T. Brox MICCAI 2015]

[O. Ronneberger, P. Fischer, T. Brox MICCAI 2015 Most cited paper in the MICCAI history

Segmentation coherence: problem

> The pixel segmentation of neural network is independent of another pixel.

The segmentation results lack space continuity/ shape prior.

Segmentation coherence: methods

Previous Researches: Part one

[Z. Li, et al. J Healthc Eng 2017]

> Adapt adversarial training to encourage highorder consistency

Add optical-flow for high dimension data

[W. Yan, Y. Wang, Z. Li, et al. MICCAI 2018]

Previous Researches: Part two

Integrated segmentation: problem

- > Medical imaging pipeline consists of many processes, which are optimized independently.
- There could be some errors and information loss among different processes.

Previous Researches: Part two

Integrated segmentation: methods

Combine the process of

reconstruction and segmentation

Combine the process of

segmentation and diagnosis

[**Z. Li**, et al. TCybern 2019]

[Z. Li, et al. Sci Rep 2017]

Open Problems

Interpretability

- Uncertainty estimation
- Explainable deep learning

Clinical Relevance

- Large-scale validation
- Beyond imaging data

Weak Label Usage

- Semi-supervised/ unsupervised learning
- Self-supervised learning
- Active learning
- Noise-label learning

Robust Learning

- Domain adaptation
- Domain shifts
- Data heterogeneity

Generalization Capacity

- Transfer learning
- > Model design
- Limited data training
- Data augmentation

Generalization in Deep Learning

Generalization gap

Generalization errors impede deep learning applications.

 $G_{M,S} = E_{test} - E_{train},$

12/35

Generalization in Deep Learning

13/35

Generalization error

- > Generalization errors in deep learning come from **overfitting** instead of underfitting.
- Generalization is believed to be smaller than the penalties of model and dataset complexities.
- > As the effect of model in unclear, we want to improve the generalization capability in the data perspective.

[R Novak, et al. ICLR 2018]

Generalization in Deep Learning

Challenges for medical imaging: a data perspective

- > Target tissues are always very small, leading to class imbalance.
- > Neural networks need more data to generalize well.

Overfitting under class imbalance	Large dataset requirement
Available Positive Negative dataset samples samples	L L L L L L L L L L L L L L L L L L L
Train Test	Train Test

14/35

Overfitting under Class Imbalance

Data imbalance in segmentation: problem

- > Tumor and organs are relatively small in medical imaging.
- > Small portions of training data lead to overfitting of underrepresented classes.
- > The network behavior of overfitting under class imbalance is not clearly understood.

Brain lesion segmentation FG:BG = 1:590

FG:BG = 1:2403

Small organs segmentation FG:BG = 1:753

FG:BG = 1:801

FG:BG = 1:1900

Kidney tumor segmentation FG:BG = 1:123 FG:BG = 1:572

Overfitting under Class Imbalance

1.Generalization 2.Class imbalance

3. Data augmentation

With less training data, performances decline due to the drastic reduction of sensitivity, while precision is retained.

[Z. Li, et al. in preparation]

Overfitting under Class Imbalance

17/35

Analysis

- CNN maps training and testing samples of the background class to similar logit values.
- However, mean activation for testing data shifts significantly for the foreground class towards and sometimes across the decision boundary.

 Test ★ Mean Value Decision Boundary Train Foreground Background z^2 Ż Z₀ Z_0 FG w/ 40% data FG w/ 30% data Z1 z,° -10 -10 Amount of training data Zŏ

DeepMedic with ATLAS

DeepMedic with BRATS

Overfitting under Class Imbalance

18/35

Analysis

- > CNN maps training and testing samples of the background class to similar logit values.
- However, mean activation for testing data shifts significantly for the foreground class towards and sometimes across the decision boundary.

3D U-net with KiTS

Overfitting under Class Imbalance

19/35

Method

We make the logit activations of foreground class far away from the decision boundary by setting bias for the foreground class in different ways.

Overfitting under Class Imbalance

Results

> The proposed variants of regularization and techniques can moderate overfitting and improve performance.

Mathad	5	% trainin	g	1	0% trainir	ng	2	0% trainir	ıg 🛛	50% training				
Method	DSC	SENS	PRC	DSC	SENS	PRC	DSC	SENS	PRC	DSC	SENS	PRC		
Vanilla - CE [16]	0.51	0.43	0.79	0.63	0.57	0.82	0.65	0.61	0.83	0.70	0.66	0.84		
Vanilla - CE - 80% tumor	0.46	0.38	0.77	0.62	0.55	0.79	0.66	0.61	0.82	0.69	0.65	0.83		
Vanilla - F1 (DSC)	0.48	0.39	0.82	0.59	0.52	0.83	0.65	0.59	0.83	0.67	0.63	0.85		
Vanilla - F2 [12]	0.47	0.39	0.79	0.60	0.54	0.83	0.66	0.62	0.82	0.69	0.67	0.81		
Vanilla - F4 [12]	0.52	0.44	0.79	0.60	0.54	0.82	0.66	0.63	0.81	0.68	0.66	0.83		
Vanilla - F8 [12]	0.49	0.40	0.80	0.60	0.54	0.83	0.65	0.61	0.82	0.68	0.66	0.80		
Large margin loss [23]	0.46	0.38	0.78	0.61	0.54	0.82	0.67	0.63	0.83	0.67	0.63	0.86		
Asymmetric large margin loss	0.55	0.51	0.76	0.64	0.58	0.84	0.68	0.64	0.82	0.69	0.66	0.85		
Focal loss [21]	0.54	0.46	0.78	0.63	0.56	0.82	0.65	0.61	0.83	0.67	0.63	0.85		
Asymmetric focal loss	0.57	0.53	0.74	0.66	0.63	0.79	0.68	0.67	0.79	0.71	0.72	0.80		
Adversarial training [9]	0.53	0.46	0.79	0.62	0.56	0.83	0.65	0.60	0.83	0.66	0.62	0.85		
Asymmetric adversarial training	0.57	0.52	0.75	0.64	0.59	0.80	0.68	0.64	0.83	0.71	0.69	0.82		
Mixup [35]	0.50	0.42	0.78	0.61	0.55	0.81	0.65	0.60	0.82	0.67	0.63	0.86		
Asymmetric mixup	0.59	0.58	0.71	0.69	0.66	0.79	0.71	0.69	0.81	0.71	0.69	0.84		
Asymmetric combination	0.62	0.66	0.71	0.71	0.73	0.75	0.72	0.74	0.79	0.73	0.77	0.78		

DeepMedic with BRATS

Overfitting under Class Imbalance

Results

> The proposed variants of regularization and techniques can work well with existing regularization techniques.

			5% tr	aining			10% training								
Method		Kidney		K	idney tum	or		Kidney		Kidney tumor					
	DSC	SENS	PRC	DSC	SENS	PRC	DSC	SENS	PRC	DSC	SENS	PRC			
Vanilla - w/ augmentation [15]	0.89	0.84	0.97	0.20	0.15	0.61	0.94	0.92	0.97	0.55	0.48	0.78			
Vanilla - w/o augmentation	0.87	0.82	0.96	0.06	0.04	0.31	0.93	0.90	0.97	0.38	0.33	0.63			
Vanilla - asymmetric augmentation	0.90	0.86	0.97	0.22	0.16	0.63	0.95	0.93	0.97	0.56	0.50	0.75			
Large margin loss [23]	0.90	0.86	0.97	0.20	0.15	0.52	0.95	0.93	0.97	0.55	0.48	0.77			
Asymmetric large margin loss	0.90	0.86	0.97	0.21	0.17	0.56	0.94	0.92	0.97	0.56	0.50	0.75			
Focal loss [21]	0.88	0.83	0.98	0.17	0.12	0.51	0.92	0.86	0.99	0.48	0.39	0.78			
Asymmetric focal loss	0.88	0.82	0.98	0.21	0.16	0.55	0.92	0.87	0.99	0.57	0.50	0.75			
Adversarial training [9]	0.88	0.84	0.97	0.17	0.12	0.52	0.94	0.92	0.97	0.52	0.45	0.80			
Asymmetric adversarial training	0.90	0.85	0.97	0.19	0.14	0.49	0.95	0.93	0.97	0.57	0.51	0.79			
Mixup [35]	0.91	0.87	0.97	0.19	0.15	0.56	0.95	0.94	0.97	0.55	0.48	0.80			
Asymmetric mixup	0.91	0.87	0.97	0.18	0.13	0.58	0.95	0.93	0.97	0.55	0.49	0.80			
Asymmetric combination	0.89	0.84	0.98	0.25	0.19	0.60	0.94	0.90	0.98	0.59	0.54	0.77			
			50% ti	raining			100% training								
Method	Kidney		Kidney tumor			Kidney			Kidney tumor						
	DSC	SENS	PRC	DSC	SENS	PRC	DSC	SENS	PRC	DSC	SENS	PRC			
Vanilla - w/ augmentation	0.96	0.96	0.97	0.76	0.74	0.84	0.97	0.96	0.97	0.79	0.78	0.85			
Vanilla - w/o augmentation	0.96	0.96	0.97	0.64	0.62	0.75	0.97	0.96	0.97	0.71	0.70	0.79			
Vanilla - asymmetric augmentation	0.96	0.96	0.96	0.75	0.74	0.84	0.96	0.97	0.96	0.78	0.79	0.83			
Large margin loss [23]	0.96	0.96	0.97	0.77	0.75	0.84	0.96	0.97	0.96	0.81	0.82	0.83			
Asymmetric large margin loss	0.96	0.96	0.97	0.78	0.76	0.85	0.97	0.97	0.97	0.82	0.82	0.84			
Focal loss [21]	0.94	0.90	0.99	0.73	0.67	0.86	0.94	0.90	0.99	0.79	0.74	0.88			
Asymmetric focal loss	0.95	0.91	0.99	0.78	0.77	0.85	0.95	0.91	0.99	0.81	0.81	0.84			
Adversarial training [9]	0.97	0.96	0.97	0.74	0.72	0.83	0.97	0.96	0.97	0.81	0.82	0.84			
Asymmetric adversarial training	0.97	0.96	0.97	0.77	0.75	0.86	0.97	0.97	0.97	0.82	0.81	0.86			
Mixup [35]	0.97	0.96	0.97	0.77	0.74	0.86	0.97	0.97	0.97	0.81	0.79	0.85			
Asymmetric mixup	0.96	0.96	0.97	0.77	0.75	0.85	0.97	0.96	0.97	0.80	0.79	0.86			
Asymmetric combination	0.94	0.91	0.98	0.98 0.79 0.79 0.85		0.97	0.96	0.98	0.82	0.83	0.85				

Overfitting under Class Imbalance

Results

> Asymmetric modifications lead to better separation of the logits of unseen foreground samples.

Overfitting under Class Imbalance

Conclusion

- > Overfitting under class imbalance leads to loss of sensitivity.
- The distribution of logit activations when processing unseen test samples of an under-represented class tends to shift towards and even across the decision boundary.
- We propose several asymmetric techniques based on our observations of logit distribution.
- Logit distribution plots can be a valuable tool for practitioners to study overfitting and other behaviour of different models.

Learning the Sampling Distribution for Data Augmentation

24/35

Data augmentation is useful, but..

- It needs prior domain knowledge to design.
- > Optimal strategies are **application specific** and difficult to hand engineer.

	BraTS	Liver lowres	Liver fullres	Hippocampus	Prostate	Lung nodule	Pancreas
Vanilla nnU-Net	0.72	0.79	0.78	0.89	0.77	0.65	0.65
Batch norm instead of Inst. norm	1.0%	-0.1%	2.9%	-0.1%	-1.3%	-14.2%	-3.7%
No feature map normalization	1.1%	-4.6%	-22.8%	-0.2%	-4.2%	3.0%	-100.0%
ReLU instead of LeakvReLU	0.6%	0.0%	1.0%	-0.1%	-0.2%	-0.4%	0.5%
No data augmentation	-0.8%	-4.9%	1.5%	-1.5%	-0.4%	4.2%	-11.3%
Only cross-entropy loss	-0.6%	-12.0%	-6.3%	0.0%	-1.4%	-25.4%	-8.8%
Only dice loss	0.9%	-2.5%	-10.1%	-0.3%	-3.0%	-11.5%	1.6%

[F. Isensee et al. arxiv:1904.08128]

Learning the Sampling Distribution for Data Augmentation

25/35

Method

We aim to learn the data augmentation strategy by drawing transformations from a learnable probability distribution.

ID	Operation Name	Description	Range of magnitudes
0	Identity	No augmentation, $\mathcal{A}(I) = I$	None
1	Scaling	Scale up/down the image	[0.05, 0.10, 0.15, 0.20, 0.25]
2	RotateLongitudinal	Rotate the image along longitudinal axis anticlockwise/clockwise	[10, 20, 30, 90, 180]
3	RotateFrontal	Rotate the image along frontal axis anticlockwise/clockwise	[10, 20, 30, 90, 180]
4	RotateSagittal	Rotate the image along sagittal axis anticlockwise/clockwise	[10, 20, 30, 90, 180]
5	Mirroring	Flip the sample in different planes	[Sagittal, Frontal, Axial]
6	Contrast	$\mathcal{A}(I) = I * (1 \pm \text{scale}), \text{ add/reduce image contrast}$	[0.01, 0.02, 0.03, 0.04, 0.05]
7	Brightness	$\mathcal{A}(I) = I \pm \text{shift, add/reduce image intensity}$	[0.05, 0.10, 0.15, 0.20, 0.25]
8	Gaussian noise	Add Gaussian noise with different variances	[0.05, 0.10, 0.15, 0.20, 0.25]
9	Gamma correction	Scale I to [0,1], then $\mathcal{A}(I) = I^{1\pm\gamma}$, and scale it back	[0.05, 0.10, 0.15, 0.20, 0.25]

Learning the Sampling Distribution for Data Augmentation

26/35

Method

We aim to close this generalization gap explicitly by learning a probability distribution of data augmentations P based on meta-gradients.

Learning the Sampling Distribution for Data Augmentation

27/35

Method

- The method mainly contains three steps in one iteration:
 - Sample a data augmentation strategy;

 $\mathcal{A}_P = \mathcal{A}[\operatorname{argmax}_i(\frac{e^{\log(p_1)+g_1}, ..., e^{\log(p_i)+g_i}, ..., e^{\log(p_N)+g_N}}{\sum_k e^{\log(p_k)+g_k}})],$

> Update the segmentation model to $f_{\theta'}$;

 $\theta' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{train}(f_{\theta}(\mathcal{A}_{P}(T))).$

Optimize P with meta-gradients by evaluating V.

$$P^{t+1} = P^t - \beta \nabla_{P^t} \mathcal{L}_{val}(f_{\theta'}(V))$$

Learning the Sampling Distribution for Data Augmentation

28/35

Results: Proof of Concept

We manually add 15 bad transformations to the augmentation set for CIFAR10 based on wide residual net. Our method learns to decrease their probabilities during training.

Learning the Sampling Distribution for Data Augmentation

Results: Medical Image Segmentation

training data

Lesion

DSC | SENS | PRC

Our learned augmentation policy consistently improves the performance on all three segmentation tasks.

training data

Kidney

DSC | SENS | PRC

Tumor

DSC SENS PRC

		w/o augment			45.7				w/o augment			82.5	96.4	15.9	11.7	49.3
	40%	heuristic Kamnitsas et al. (2017)	43.3	53.2	49.8		20%	heuristic	Kamnitsas e	92.3	90.0	95.8	51.4	50.3	63.6	
	1070	random Cubuk et al. (2019)	42.8	47.5	54.4		2070	randor	random Cubuk et al. (2019)			91.9	96.8	52.4	45.1	75.5
		learned	43.3	49.0	54.1	_			learned			93.4	96.3	55.5	48.7	74.9
DoonMadic with ATLAS		w/o augment	39.5	35.7	57.9				w/o augment			90.8	96.8	35.4	29.9	59.6
Deepweult with AILAS	50%	heuristic Kamnitsas et al. (2017)	51.2	58.0	56.2		50%	heuristic	heuristic Kamnitsas et al. (2017)				95.4	59.9	56.6	71.3
		random Cubuk et al. (2019) 51.9 55.0 5 learned 53.7 57.8 5			58.0			randor	random Cubuk et al. (2019)				94.7	66.3	65.8	74.1
			learned 53.7 57.8 3			9.8			learned		95.5	96.0	95.5	67.4	64.8	75.7
		w/o augment	58.2	60.5	64.2	.2		1	w/o augment			93.4	96.4	51.8	47.0	67.7
	100%	random Cubuk et al. (2017)	heuristic Kamnitsas et al. (2017) 58.2 60.5			04.4 52.4	100%	heuristic Kamnitsas et al. (2017)			95.5	96.7	94.5	00.7	72.2	08.5
		random Cubuk et al. (2019) 58.8		61.8	68.9			random Cubuk et al. (2019)			90.4	90.7	90.2	70.4	70.0	76.2
			01.1	01.0	00.9	-		learned			90.5	97.5	95.5	12.9	/4.4	70.5
							Whole			Core			I	Enhanc	ing	
	training data				D	SC	SENS	PRC	DSC	SENS	PR	C	DSC	SEN	S F	PRC
		w/o augm	ent		7	8.9	71.2	94.0	65.1	61.9	80.	4	62.9	57.9		77.5
	100	, heuristic Kamnitsas et al. (2017)) 8	5.7	80.7	93.7	71.9	67.5	83.	7	67.9	62.8	1	31.3
	10%	random Cubuk et al. (2019)			8	5.8	80.9	94.2	74.3	71.0	84.	4	69.5	66.3	8	30.6
		learned			8	7.2	83.0	94.0	75.0	70.9	86.	1	69.9	65.5	8	31.6
		w/o augment			8	8.2	85.0	93.0	75.9	73.7	86.	8	73.4	73.0		78.7
DoopMadic with PPATS	509	heuristic Kamnitsas	heuristic Kamnitsas et al. (2017)			9.0	87.0	92.5	77.8	75.8	88.	4	74.5	73.6	8	32.0
Deepweuld with BRAIS	507	random Cubuk et	al. (2	019)	8	9.4	88.3	91.7	77.4	75.1	88.	8	74.0	73.5	8	31.7
	learned				8	9.6	87.9	92.6	78.1	77.1	85.	2	74.6	75.2		79.2
		w/o augm	ent		8	9.1	87.5	91.7	78.9	77.1	87.	2	75.2	76.0		79.0
	100	heuristic Kamnitsas	et al.	(2017)) 8	9.8	88.3	92.3	79.4	78.8	87.	5	75.2	76.4	. 8	30.2
	100	random Cubuk et	al. (2	019)	9	0.0	89.5	91.7	80.4	79.0	89.	4	75.2	75.6	8	31.1
		learned	learned				88.4	92.8	81.0	80.0	87.	3	75.8	77.2		79.5

DeepMedic with KiTS

29/35

Learning the Sampling Distribution for Data Augmentation

30/35

Results: Medical Image Segmentation

The learned probability distributions seem to reflect well the type of data harmonization that has been carried out by the providers of the datasets.

Rotation large (180°) in the sagittal axis

Learning the Sampling Distribution for Data Augmentation

31/35

Results: Medical Image Segmentation

> The optimal augmentation strategies varied between **datasets**, models and the size of training datasets.

Learning the Sampling Distribution for Data Augmentation

32/35

Conclusion

- We propose to automate the process of data augmentation by metagradients with high efficiency in both time and data. (just twice the time of normal training!)
- We can provide optimal augmentation strategies for different application scenarios.
- In our case, geometry transformations are more likely to be chosen than intensity transformations.
- Random augmentation is a very strong baseline.
- Different dataset, model, size of training dataset favour different data augmentation strategies.

Conclusion

Take home message

- Medical image segmentation is a well-studied research area, but there are still many open problems (opportunities).
- We are focusing on improving the generalization capacity of neural networks, which is a practical and fundamental problem for medical image segmentation, from the data perspective.
 - We observe the logit distribution of image segmentation and propose asymmetric techniques to counter overfitting under class imbalance.
 - We propose to learn the sampling distribution of data augmentation and provide optimal augmentation strategies.

Useful tools

Model

nnU-net

- https://github.com/MIC-DKFZ/nnUNet
- DeepMedic
 - https://github.com/deepmedic/deepmedic

Dataset

- Grand challenge
 - https://grand-challenge.org/
- ➢ BRATS
 - https://www.med.upenn.edu/sbia/brats2018/data.html
- ≻ KiTS
 - https://kits19.grand-challenge.org/data/
- ➤ ATLAS
 - http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html

Thank you!

Contact: zeju.li18@imperial.ac.uk