Huawei Image Denoising Challenge 2018

Zeju Li PhD candidate in Computing Imperial College London zl9518@ic.ac.uk

2) Backbone Improvement

1) Dataset Split

3) Self-Ensemble

2) Backbone Improvement

DnCNN Baseline

- Learn the distribution of noise
- Training using patches with the size of 64*64 pixels
- L2 loss

	PSNR
DnCNN [1] Baseline	40.82

[1] Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, TIP 2017

Split dataset based on ISO

- Split dataset (both training and test) into three groups based on ISO
- Train different models for different images

	PSNR	Improvement
DnCNN	40.82	-
DnCNN + 3 split	42.40	+1.58

1) Dataset Split

3) Self-Ensemble

2) Backbone Improvement

Backbone Improvement

- An advanced model in image super-resolution (EDSR [2])
- **Deeper** architectures (20 Resblocks)
- Enhanced **residual** blocks

	PSNR	Improvement
DnCNN + 3 split	42.40	-
EDSR + 3 split	43.44	+1.04

[2] Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 2017

More training and more Splits

- Training for a longer time
- More Splits at the ISO intervals of 500

	PSNR	Improvement
EDSR + 3 split	43.44	-
EDSR + 7 split	45.80	+2.38

1) Dataset Split

3) Self-Ensemble

2) Backbone Improvement

Self-ensemble

- During the test time, **flip** and **rotate** the image and generate **8** augmentations
- Average the output
- We also notice that continuing training using L1 loss get improvements (++), however the leaderboard was closed

	PSNR	Improvement
EDSR + 7 split	45.80	-
EDSR + 7 split +self-ensemble	45.94	+0.14
EDSR + 7 split +self-ensemble++	45.94+	+

1) Dataset Split

3) Self-Ensemble

2) Backbone Improvement

Results

DENOISE CHALLENGE

Results

Noisy Image

Denoised Results

Results

Noisy Image

Denoised Results

Results

Noisy Image

Denoised Results

Summary

- 1. Dataset split
- 2. Backbone Improvement
- 3. Self-ensemble

Other improvements:

- 1. Suitable size of training patch
- 2. The combination of loss functions

Thanks

• Thank Huawei to host the challenge and provide such a great opportunity to practice AI skills

